Combined anaerobic ammonium and methane oxidation for nitrogen and methane removal

2011 ◽  
Vol 39 (6) ◽  
pp. 1822-1825 ◽  
Author(s):  
Baoli Zhu ◽  
Jaime Sánchez ◽  
Theo A. van Alen ◽  
Janeth Sanabria ◽  
Mike S.M. Jetten ◽  
...  

Anammox (anaerobic ammonium oxidation) is an environment-friendly and cost-efficient nitrogen-removal process currently applied to high-ammonium-loaded wastewaters such as anaerobic digester effluents. In these wastewaters, dissolved methane is also present and should be removed to prevent greenhouse gas emissions into the environment. Potentially, another recently discovered microbial pathway, n-damo (nitrite-dependent anaerobic methane oxidation) could be used for this purpose. In the present paper, we explore the feasibility of simultaneously removing methane and ammonium anaerobically, starting with granules from a full-scale anammox bioreactor. We describe the development of a co-culture of anammox and n-damo bacteria using a medium containing methane, ammonium and nitrite. The results are discussed in the context of other recent studies on the application of anaerobic methane- and ammonia-oxidizing bacteria for wastewater treatment.

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Lu ◽  
Yiguo Hong ◽  
Ying Wei ◽  
Ji-Dong Gu ◽  
Jiapeng Wu ◽  
...  

AbstractAnaerobic ammonium oxidation (anammox) process has been acknowledged as an environmentally friendly and time-saving technique capable of achieving efficient nitrogen removal. However, the community of nitrification process in anammox-inoculated wastewater treatment plants (WWTPs) has not been elucidated. In this study, ammonia oxidation (AO) and nitrite oxidation (NO) rates were analyzed with the incubation of activated sludge from Xinfeng WWTPs (Taiwan, China), and the community composition of nitrification communities were investigated by high-throughput sequencing. Results showed that both AO and NO had strong activity in the activated sludge. The average rates of AO and NO in sample A were 6.51 µmol L−1 h−1 and 6.52 µmol L−1 h−1, respectively, while the rates in sample B were 14.48 µmol L−1 h−1 and 14.59 µmol L−1 h−1, respectively. The abundance of the nitrite-oxidizing bacteria (NOB) Nitrospira was 0.89–4.95 × 1011 copies/g in both samples A and B, the abundance of ammonia-oxidizing bacteria (AOB) was 1.01–9.74 × 109 copies/g. In contrast, the abundance of ammonia-oxidizing archaea (AOA) was much lower than AOB, only with 1.28–1.53 × 105 copies/g in samples A and B. The AOA community was dominated by Nitrosotenuis, Nitrosocosmicus, and Nitrososphaera, while the AOB community mainly consisted of Nitrosomonas and Nitrosococcus. The dominant species of Nitrospira were Candidatus Nitrospira defluvii, Candidatus Nitrospira Ecomare2 and Nitrospira inopinata. In summary, the strong nitrification activity was mainly catalyzed by AOB and Nitrospira, maintaining high efficiency in nitrogen removal in the anammox-inoculated WWTPs by providing the substrates required for denitrification and anammox processes.


Author(s):  
A. Banach-Wiśniewska ◽  
M. Ćwiertniewicz-Wojciechowska ◽  
A. Ziembińska-Buczyńska

Abstract Implementation of anaerobic ammonium oxidation (anammox) below its optimal temperature, known as “cold anammox”, may lead to its common use in wastewater treatment plants, reducing the operational costs of wastewater treatment. Thus, we investigated the effects of immobilization in polyvinyl alcohol–sodium alginate gel beads on anammox performance at temperatures of 30 °C, 23 °C, and 15 °C in laboratory-scale sequencing batch reactors. We determined the relative gene abundance of the nitrogen removal bacterial groups, which are considered as the key functional microbes of nitrogen cycle in activated sludge: denitrifies, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and anammox bacteria. Nitrogen removal efficiency was higher for immobilized anammox sludge in comparison with non-immobilized anammox biomass at each investigated temperature. At 30 °C, nitrogen removal efficiency was 83.7 ± 6.46% for immobilized reactor, and 79.4 ± 7.83% for the control reactor, while at 15 °C was remained at the level of 50 ± 2.5% for immobilized reactor, and fluctuated from 13.2 to 45.3% for the control one. During temperature shifts, the process was also more stable in the case of the reactor with immobilized biomass. A statistically significant correlation was found between nitrogen removal efficiency and hydrazine oxidoreductase gene abundance.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 346
Author(s):  
Keugtae Kim ◽  
Yong-Gyun Park

Conventional biological nutrient removal processes in municipal wastewater treatment plants are energy-consuming, with oxygen supply accounting for 45–75% of the energy expenditure. Many recent studies examined the implications of the anammox process in sidestream wastewater treatment to reduce energy consumption, however, the process did not successfully remove nitrogen in mainstream wastewater treatment with relatively low ammonia concentrations. In this study, blue light was applied as an inhibitor of nitrite-oxidizing bacteria (NOB) in a photo sequencing batch reactor (PSBR) containing raw wastewater. This simulated a biological nitrogen removal system for the investigation of its application potential in nitrite accumulation and nitrogen removal. It was found that blue light illumination effectively inhibited NOB rather than ammonia-oxidizing bacteria due to their different sensitivity to light, resulting in partial nitrification. It was also observed that the NOB inhibition rates were affected by other operational parameters like mixed liquor suspended solids (MLSS) concentration and sludge retention time (SRT). According to the obtained results, it was concluded that the process efficiency of partial nitrification and anammox (PN/A) could be significantly enhanced by blue light illumination with appropriate MLSS concentration and SRT conditions.


Author(s):  
Deyong Li ◽  
Fang Fang ◽  
Guoqiang Liu

Nitrification is an essential process for nutrient removal from wastewater and an important emission source of nitrous-oxide (N2O), which is a powerful greenhouse gas and a dominant ozone-depleting substance. In this study, nitrification and N2O emissions were tested in two weakly acidic (pH = 6.3–6.8) reactors: one with dissolved oxygen (DO) over 2.0 mg/L and the other with DO approximately 0.5 mg/L. Efficient nitrification was achieved in both reactors. Compared to the high-DO reactor, N2O emission in the low-DO reactor decreased slightly by 20% and had insignificant correlation with the fluctuations of DO (P = 0.935) and nitrite (P = 0.713), indicating that N2O might not be mainly produced via nitrifier denitrification. Based on qPCR, qFISH, functional gene amplicon and metagenome sequencing, it was found that complete ammonia oxidizer (comammox) Nitrospira significantly outnumbered canonical ammonia-oxidizing bacteria (AOB) in both weakly acidic reactors, especially in the low DO reactor with the comammox/AOB amoA gene ratio increasing from 6.6 to 17.1. Therefore, it was speculated that the enriched comammox was the primary cause for the slightly decreased N2O emission under long-term low DO in weakly acidic reactor. This study demonstrated that comammox Nitrospira can survive well under the weakly acidic and low-DO conditions, implying that achieving efficient nitrification with low N2O emission as well as low energy and alkalinity consumption is feasible for wastewater treatment. Importance Nitrification in wastewater treatment is an important process for eutrophication control and an emission source for greenhouse gas of N2O. The nitrifying process is usually operated at a slightly alkaline pH and high DO (>2 mg/L) to ensure efficient nitrification. However, it consumes a large amount of energy and chemicals especially for wastewater without sufficient alkalinity. This manuscript demonstrated that comammox can adapt well to the weakly acidic and low-DO bioreactors, with a result of efficient nitrification and low N2O emission. These findings indicate that comammox are significant for sustainable wastewater treatment, which provides an opportunity to achieve efficient nitrification with low N2O production as well as low energy and chemical consumption simultaneously.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 20 ◽  
Author(s):  
Sunja Cho ◽  
Cicilia Kambey ◽  
Van Nguyen

The anaerobic ammonium oxidation (anammox) process is well-known as a low-energy consuming and eco-friendly technology for treating nitrogen-rich wastewater. Although the anammox reaction was widely investigated in terms of its application in many wastewater treatment processes, practical anammox application at the pilot and industrial scales is limited because nitrogen removal efficiency and anammox activity are dependent on many operational factors such as temperature, pH, dissolved oxygen concentration, nitrogen loading, and organic matter content. In practical application, anammox bacteria are possibly vulnerable to non-essential compounds such as sulfides, toxic metal elements, alcohols, phenols, and antibiotics that are potential inhibitors owing to the complexity of the wastewater stream. This review systematically summarizes up-to-date studies on the effect of various operational factors on nitrogen removal performance along with reactor type, mode of operation (batch or continuous), and cultured anammox bacterial species. The effect of potential anammox inhibition factors such as high nitrite concentration, high salinity, sulfides, toxic metal elements, and toxic organic compounds is listed with a thorough interpretation of the synergistic and antagonistic toxicity of these inhibitors. Finally, the strategy for optimization of anammox processes for wastewater treatment is suggested, and the importance of future studies on anammox applications is indicated.


2011 ◽  
Vol 102 (22) ◽  
pp. 10299-10304 ◽  
Author(s):  
Masashi Hatamoto ◽  
Tomo Miyauchi ◽  
Tomonori Kindaichi ◽  
Noriatsu Ozaki ◽  
Akiyoshi Ohashi

2020 ◽  
Vol 17 (1) ◽  
pp. 17 ◽  
Author(s):  
Juqing Lou ◽  
Jiaping Li ◽  
Xilei Wang

Environmental contextDenitrifying anaerobic methane oxidation (DAMO) is a new process in wastewater treatment with the potential to provide cheap and sustainable development. To better apply this technology to the large scale, we studied the response mechanism of DAMO microorganisms to ammonia, the main form of nitrogen in the nitrogenous wastewater. The results can provide a theoretical basis for the stable and efficient operation of DAMO processes. AbstractThe dominant microorganisms in the denitrifying anaerobic methane oxidation (DAMO) process are primarily DAMO bacteria and DAMO archaea, which can simultaneously realise methane oxidation and denitrification. Ammonia is the primary form of nitrogen found in wastewater. This study focuses on a coexistence system that contains both DAMO bacteria and DAMO archaea (DAMO co-system). The short- and long-term effects of NH4+-N on the DAMO co-system were investigated at both the macro level (such as denitrification performance) and the micro level (such as microbial structure and community). Short-term experimental studies demonstrated that the safe concentration of ammonia for this system was 250mgNL−1. When the ammonia concentration was 500mgNL−1, the nitrogen removal efficiency was significantly inhibited. With an increase in concentration and an extension of time, the inhibitory effect of ammonia was enhanced. Long-term experimental studies showed that the nitrogen removal performance of DAMO was completely inhibited when the ammonia concentration reached 1000mgNL−1 and that ammonia had a toxic accumulation effect on the DAMO co-system. The results of the pH experimental study demonstrated that free ammonia (FA) was the limiting factor in the alkaline condition, while ionised NH4+ was the limiting factor in neutral and acidic conditions. Scanning electron microscopy (SEM) demonstrated that the microbes in the DAMO co-system shrank after short-term exposure and that the microorganisms shrank in the shape of polygons. High-throughput sequencing analysis demonstrated that the community structure of the DAMO co-system changed substantially, and the species diversity and abundance decreased distinctly after long-term inhibition. A genus analysis indicated that the reduction in Nitrospirae may be an internal reason for the decrease in the denitrification performance of the DAMO co-system.


1998 ◽  
Vol 38 (1) ◽  
pp. 1-7 ◽  
Author(s):  
M. C. M. Van Loosdrecht ◽  
M. S. M. Jetten

Nitrogen conversion processes are essential for most wastewater treatment systems. Due to the many possible conversions, and the complexity of analysing the reactions under actual conditions, there is much room for confusion. This review provides an overview of the possible microbiological nitrogen conversions described in literature. The relevance of these conversions with respect to wastewater treatment processes is discussed. Rates described for aerobic denitrification or denitrification by autotrophic nitrifiers are so low that these conversions probably do not play a significant role under practical conditions. Heterotrophic nitrification may be of relevance only when the wastewater contains a high COD/N ratio (>10). Anaerobic ammonium oxidation can occur in fully autotrophic systems with very long sludge retention times or biofilm systems. This conversion offers great opportunities since it allows us to denitrify with ammonium as electron donor, i.e. no organic substrate is needed in the nitrogen removal process.


Author(s):  
Lushen Zuo ◽  
Hong Yao ◽  
Huayu Li ◽  
Liru Fan ◽  
Fangxu Jia

A single-stage anaerobic ammonium oxidation (ANAMMOX) process with an integrated biofilm–activated sludge system was carried out in a laboratory-scale flow-through reactor (volume = 57.6 L) to treat pharmaceutical wastewater containing chlortetracycline. Partial nitrification was successfully achieved after 48 days of treatment with a nitrite accumulation of 70%. The activity of ammonia oxidizing bacteria (AOB) decreased when the chemical oxygen demand (COD) concentration of the influent was 3000 mg/L. When switching to the single-stage ANAMMOX operation, (T = 32–34 °C, DO = 0.4–0.8 mg/L, pH = 8.0–8.5), the total nitrogen (TN) removal loading rate and efficiency were 1.0 kg/m3/d and 75.2%, respectively, when the ammonium concentration of the influent was 287 ± 146 mg/L for 73 days. The findings of this study imply that single-stage ANAMMOX can achieve high nitrogen removal rates and effectively treat pharmaceutical wastewater with high concentrations of COD (1000 mg/L) and ammonium.


Sign in / Sign up

Export Citation Format

Share Document