Argonaute and GW182 proteins: an effective alliance in gene silencing

2013 ◽  
Vol 41 (4) ◽  
pp. 855-860 ◽  
Author(s):  
Janina Pfaff ◽  
Gunter Meister

Argonaute proteins interact with small RNAs and facilitate small RNA-guided gene-silencing processes. Small RNAs guide Argonaute proteins to distinct target sites on mRNAs where Argonaute proteins interact with members of the GW182 protein family (also known as GW proteins). In subsequent steps, GW182 proteins mediate the downstream steps of gene silencing. The present mini-review summarizes and discusses our current knowledge of the molecular basis of Argonaute–GW182 protein interactions.

2014 ◽  
Vol 395 (6) ◽  
pp. 611-629 ◽  
Author(s):  
Anne Dueck ◽  
Gunter Meister

Abstract Small RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs) or Piwi-interacting RNAs (piRNAs) are important regulators of gene expression in various organisms. Small RNAs bind to a member of the Argonaute protein family and are incorporated into larger structures that mediate diverse gene silencing events. The loading of Argonaute proteins with small RNAs is aided by a number of auxiliary factors as well as ATP hydrolysis. This review will focus on the mechanisms of Argonaute loading in different organisms. Furthermore, we highlight the versatile functions of small RNA-Argonaute protein complexes in organisms from all three kingdoms of life.


2018 ◽  
Author(s):  
Miguel Vasconcelos Almeida ◽  
Sabrina Dietz ◽  
Stefan Redl ◽  
Emil Karaulanov ◽  
Andrea Hildebrandt ◽  
...  

AbstractIn every domain of life, Argonaute proteins and their associated small RNAs regulate gene expression. Despite great conservation of Argonaute proteins throughout evolution, many proteins acting in small RNA pathways are not widely conserved. Gametocyte-specific factor 1 (Gtsf1) proteins, characterized by two tandem CHHC zinc fingers and an unstructured, acidic C-terminal tail, are conserved in animals and act in small RNA pathways. In fly and mouse, they are required for fertility and have been shown to interact with Piwi clade Argonautes. We identified T06A10.3 as the Caenorhabditis elegans Gtsf1 homolog and named it gtsf-1. Given its conserved nature and roles in Piwi-mediated gene silencing, we sought out to characterize GTSF-1 in the context of the small RNA pathways of C. elegans. Like its homologs, GTSF-1 is required for normal fertility. Surprisingly, we report that GTSF-1 is not required for Piwi-mediated gene silencing. Instead, gtsf-1 mutants show strong depletion of a class of endogenous small RNAs, known as 26G-RNAs, and fully phenocopy mutants lacking RRF-3, the RNA-dependent RNA Polymerase that synthesizes 26G-RNAs. We show, both in vivo and in vitro, that GTSF-1 specifically and robustly interacts with RRF-3 via its tandem CHHC zinc fingers. Furthermore, we demonstrate that GTSF-1 is required for the assembly of a larger RRF-3 and DCR-1-containing complex, also known as ERIC, thereby allowing for 26G-RNA generation. We propose that GTSF-1 homologs may similarly act to drive the assembly of larger complexes that subsequently act in small RNA production and/or in imposing small RNA-mediated silencing activities.


2021 ◽  
Vol 59 (1) ◽  
Author(s):  
Yongli Qiao ◽  
Rui Xia ◽  
Jixian Zhai ◽  
Yingnan Hou ◽  
Li Feng ◽  
...  

Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host–pathogen interactions. We highlight secondary small interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of small RNAs trafficking at the host–pathogen interface are discussed. Expected final online publication date for the Annual Review of Phytopathology, Volume 59 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2018 ◽  
Author(s):  
Miguel Vasconcelos Almeida ◽  
António Miguel de Jesus Domingues ◽  
René F. Ketting

AbstractEndogenous small RNAs (sRNAs) and Argonaute proteins are ubiquitous regulators of gene expression in germline and somatic tissues. sRNA-Argonaute complexes are often expressed in gametes and are consequently inherited by the next generation upon fertilization. In Caenorhabditis elegans, 26G-RNAs are primary endogenous sRNAs that trigger the expression of downstream secondary sRNAs. Two subpopulations of 26G-RNAs exist, each of which displaying strongly compartmentalized expression: one is expressed in the spermatogenic gonad and associates with the Argonautes ALG-3/4; plus another expressed in oocytes and in embryos, which associates with the Argonaute ERGO-1. The determinants and dynamics of gene silencing elicited by 26G-RNAs are largely unknown. Here, we provide diverse new insights into these endogenous sRNA pathways of C. elegans. Using genetics and deep sequencing, we dissect a maternal effect of the ERGO-1 branch sRNA pathway. We find that maternal primary sRNAs can trigger the production of zygotic secondary sRNAs that are able to silence targets, even in the absence of zygotic primary triggers. Thus, the interaction of maternal and zygotic sRNA populations, assures target gene silencing throughout animal development. Furthermore, we find that sRNA abundance, the pattern of origin of sRNA and 3’ UTR length are predictors of the regulatory outcome by the Argonautes ALG-3/4. Lastly, we discovered that ALG-3- and ALG-4-bound 26G-RNAs are dampening the expression of their own mRNAs, revealing a negative feedback loop. Altogether, we provide several new regulatory insights on the dynamics, target regulation and self-regulation of the endogenous RNAi pathways of C. elegans.Author SummarySmall RNAs (sRNAs) and their partner Argonaute proteins regulate the expression of target RNAs. When sperm and egg meet upon fertilization, a diverse set of proteins and RNA, including sRNA-Argonaute complexes, is passed on to the developing progeny. Thus, these two players are important to initiate specific gene expression programs in the next generation. The nematode Caenorhabditis elegans expresses several classes of sRNAs. 26G-RNAs are a particular class of sRNAs that are divided into two subpopulations: one expressed in the spermatogenic gonad and another expressed in oocytes and in embryos. In this work, we describe the dynamics whereby oogenic 26G-RNAs setup gene silencing in the next generation. We also show several ways that spermatogenic 26G-RNAs and their partner Argonautes, ALG-3 and ALG-4, use to regulate their targets. Finally, we show that ALG-3 and ALG-4 are fine-tuning their own expression, a rare role of Argonaute proteins. Overall, we provide new insights into how sRNAs and Argonautes are regulating gene expression.


2020 ◽  
Author(s):  
Rajani Kanth Gudipati ◽  
Kathrin Braun ◽  
Foivos Gypas ◽  
Daniel Hess ◽  
Jan Schreier ◽  
...  

SummarySmall RNA pathways defend the germlines of animals against selfish genetic elements and help to maintain genomic integrity. At the same time, their activity needs to be well-controlled to prevent silencing of ‘self’ genes. Here, we reveal a proteolytic mechanism that controls endogenous small interfering (22G) RNA activity in the Caenorhabditis elegans germline to protect genome integrity and maintain fertility. We find that WAGO-1 and WAGO-3 Argonaute (Ago) proteins are matured through proteolytic processing of their unusually proline-rich N-termini. In the absence of DPF-3, a P-granule-localized N-terminal dipeptidase orthologous to mammalian DPP8/9, processing fails, causing a change of identity of 22G RNAs bound to these WAGO proteins. Desilencing of repeat- and transposon-derived transcripts, DNA damage and acute sterility ensue. These phenotypes are recapitulated when WAGO-1 and WAGO-3 are rendered resistant to DFP-3-mediated processing, identifying them as critical substrates of DPF-3. We conclude that N-terminal processing of Ago proteins regulates their activity and promotes discrimination of self from non-self by ensuring association with the proper complement of small RNAs.Graphical Abstract: The role of DPF-3 in the fertility of the animalsIn wild type animals, the WAGO-1 and WAGO-3 Argonaute proteins are produced as immature pro-proteins with N-termini (N) that are unusually rich in prolines (P). N-terminal processing by DPF-3 is required for loading of the proper small RNA cargo and stabilization of WAGO-3. Accordingly, loss of this processing activity causes desilencing of transposable elements (TE), cell death and sterility.


2021 ◽  
Vol 17 ◽  
pp. 1-10
Author(s):  
Brandon Charles Seychell ◽  
Tobias Beck

This minireview provides an overview on the current knowledge of protein–protein interactions, common characterisation methods to characterise them, and their role in protein complex formation with some examples. A deep understanding of protein–protein interactions and their molecular interactions is important for a number of applications, including drug design. Protein–protein interactions and their discovery are thus an interesting avenue for understanding how protein complexes, which make up the majority of proteins, work.


2019 ◽  
Vol 73 (5) ◽  
pp. 362-367 ◽  
Author(s):  
Jens A. Schröder ◽  
Pauline E. Jullien

Small RNAs gene regulation was first discovered about 20 years ago. It represents a conserve gene regulation mechanism across eukaryotes and is associated to key regulatory processes. In plants, small RNAs tightly regulate development, but also maintain genome stability and protect the plant against pathogens. Small RNA gene regulation in plants can be divided in two canonical pathways: Post-transcriptional Gene Silencing (PTGS) that results in transcript degradation and/or translational inhibition or Transcriptional Gene Silencing (TGS) that results in DNA methylation. In this review, we will focus on the model plant Arabidopsis thaliana. We will provide a brief overview of the molecular mechanisms involved in canonical small RNA pathways as well as introducing more atypical pathways recently discovered.


PLoS Genetics ◽  
2009 ◽  
Vol 5 (9) ◽  
pp. e1000646 ◽  
Author(s):  
Allison C. Mallory ◽  
Annika Hinze ◽  
Matthew R. Tucker ◽  
Nicolas Bouché ◽  
Virginie Gasciolli ◽  
...  

2012 ◽  
Vol 3 (6) ◽  
pp. 545-559
Author(s):  
Corinna Giorgi ◽  
Carlo Cogoni ◽  
Caterina Catalanotto

AbstractArgonaute proteins play a central role in gene silencing pathways mediated by small RNA molecules. The ancestral function of small RNA-dependent silencing is related to genome protection against parasitic nucleic acids, such as transposons and viruses. However, new classes of small RNAs are continuously being uncovered in all higher eukaryotes in which they play important functions in processes ranging from embryonic development to differentiation to cell proliferation and metabolism. Small RNAs have variegated biogenesis pathways and accomplish distinct functions. Nevertheless, it appears that all small RNAs work merely as guides in recognizing the target RNAs invariably relying on the interaction with Argonaute proteins and associated factors for their biological function. Here, we discuss recent findings on the structure and regulation of mammalian Argonaute proteins and overview the various roles that these versatile proteins play in regulating gene expression.


Sign in / Sign up

Export Citation Format

Share Document