scholarly journals The RNA world and the origin of metabolic enzymes

2014 ◽  
Vol 42 (4) ◽  
pp. 985-988 ◽  
Author(s):  
Markus Ralser

An RNA world has been placed centre stage for explaining the origin of life. Indeed, RNA is the most plausible molecule able to form both a (self)-replicator and to inherit information, necessities for initiating genetics. However, in parallel with self-replication, the proto-organism had to obtain the ability to catalyse supply of its chemical constituents, including the ribonucleotide metabolites required to replicate RNA. Although the possibility of an RNA-catalysed metabolic network has been considered, it is to be questioned whether RNA molecules, at least on their own, possess the required catalytic capacities. An alternative scenario for the origin of metabolism involves chemical reactions that are based on environmental catalysts. Recently, we described a non-enzymatic glycolysis and pentose phosphate pathway-like reactions catalysed by metal ions [mainly Fe(II)] and phosphate, simple inorganic molecules abundantly found in Archaean sediments. While the RNA world can serve to explain the origin of genetics, the origin of the metabolic network might thus date back to constraints of environmental chemistry. Interestingly, considering a metal-catalysed origin of metabolism gives rise to an attractive hypothesis about how the first enzymes could have formed: simple RNA or (poly)peptide molecules could have bound the metal ions, and thus increased their solubility, concentration and accessibility. In a second step, this would have allowed substrate specificity to evolve.

2019 ◽  
Author(s):  
Ken Ohsaka

Difficulties to synthesize RNA nucleotides from their subunits in modern labs under simulated environments leads us to propose a possible process for the synthesis by cross complimentary self-replication with help of clay minerals, which might be operated on prebiotic Earth. Clay minerals are known to be good catalysts and certainly existed on prebiotic Earth. The self-replication of RNA nucleotides (monomers) may be considered as the origin of potential self-replication of some extant RNA polymers, and also the reason for homochirality of RNA molecules.


Author(s):  
Falk Wachowius ◽  
James Attwater ◽  
Philipp Holliger

AbstractThe emergence of functional cooperation between the three main classes of biomolecules – nucleic acids, peptides and lipids – defines life at the molecular level. However, how such mutually interdependent molecular systems emerged from prebiotic chemistry remains a mystery. A key hypothesis, formulated by Crick, Orgel and Woese over 40 year ago, posits that early life must have been simpler. Specifically, it proposed that an early primordial biology lacked proteins and DNA but instead relied on RNA as the key biopolymer responsible not just for genetic information storage and propagation, but also for catalysis, i.e. metabolism. Indeed, there is compelling evidence for such an ‘RNA world’, notably in the structure of the ribosome as a likely molecular fossil from that time. Nevertheless, one might justifiably ask whether RNA alone would be up to the task. From a purely chemical perspective, RNA is a molecule of rather uniform composition with all four bases comprising organic heterocycles of similar size and comparable polarity and pKa values. Thus, RNA molecules cover a much narrower range of steric, electronic and physicochemical properties than, e.g. the 20 amino acid side-chains of proteins. Herein we will examine the functional potential of RNA (and other nucleic acids) with respect to self-replication, catalysis and assembly into simple protocellular entities.


Author(s):  
Ken Ohsaka

Difficulties to synthesize RNA nucleotides from their subunits in modern labs under simulated environments leads us to propose a possible process for the synthesis by cross complimentary self-replication with help of clay minerals, which might be operated on prebiotic Earth. Clay minerals are known to be good catalysts and certainly existed on prebiotic Earth. The self-replication of RNA nucleotides (monomers) may be considered as the origin of potential self-replication of some extant RNA polymers, and also the reason for homochirality of RNA molecules.


2020 ◽  
Vol 117 (15) ◽  
pp. 8236-8242 ◽  
Author(s):  
Steven K. Wolk ◽  
Wesley S. Mayfield ◽  
Amy D. Gelinas ◽  
David Astling ◽  
Jessica Guillot ◽  
...  

The modern version of the RNA World Hypothesis begins with activated ribonucleotides condensing (nonenzymatically) to make RNA molecules, some of which possess (perhaps slight) catalytic activity. We propose that noncanonical ribonucleotides, which would have been inevitable under prebiotic conditions, might decrease the RNA length required to have useful catalytic function by allowing short RNAs to possess a more versatile collection of folded motifs. We argue that modified versions of the standard bases, some with features that resemble cofactors, could have facilitated that first moment in which early RNA molecules with catalytic capability began their evolutionary path toward self-replication.


1995 ◽  
Vol 350 (1334) ◽  
pp. 345-352 ◽  

The kinetic theory of replication has been extended to include dual mechanisms for conversion of self-annealed single-strand RNA to double-strand molecules, which do not replicate. An analysis of experimental results established that the replicate-template annealing reaction during transcription significantly retarded replication in vitro among three RNA variants copied by Qβ replicase. Annealing between complementary RNA strands free in solution had far less significance. The finding that an RNA variant can be replicated in a multiple hairpin configuration, but not as its single, long hairpin conformer, the correlation between stability of strand secondary structure and replicative fitness, and a lack of homology in the internal sequence of RNA variants copied by Qβ replicase support the conclusion that template competence depends on strand configuration, independent of most of the underlying base sequence. Occurrence of self-annealed strands in the Qβ replicase system was attributed to its reliance on RNA-driven strand separation, in the absence of enzyme catalysed strand unwinding. A ‘configuration before sequence’ path to self-replication exhibited a substantially lower combinatorial barrier than standard sequence-dependent evolution. RNA-dependent RNA synthesis in the Qβ system thus displays features of an RNA World and, interestingly, they reveal a rapid path for evolution of the first self-replicating molecule on Earth.


Sci ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 73
Author(s):  
Prasanta S. Bandyopadhyay ◽  
Nolan Grunska ◽  
Don Dcruz ◽  
Mark C. Greenwood

We address the need for a model by considering two competing theories regarding the origin of life: (i) the Metabolism First theory and (ii) the RNA World theory. We discuss two inter-related points. (I) Models are valuable tools in understanding both the processes and intricacies of the origin of life issues. (II) Insights from models also help us to evaluate the core objection to origin of life theories called “the inefficiency objection” commonly raised by proponents of both the Metabolism First theory and the RNA World theory against each other. We use Simpson’s paradox as a tool for challenging this objection. We will use models in various senses ranging from taking them as representations of reality to treating them as theories/accounts that provide heuristics for probing reality. In this paper, we will frequently use models and theories interchangeably. Additionally, we investigate Conway’s Game of Life and contrast it with our Simpson’s Paradox (SP)-based approach to emergence of life issues. Finally, we discuss some of the consequences of our view. A scientific model is testable in three senses: (i) a logical sense, (ii) a nomological sense, and (iii) a current technological sense. The SP-based model is testable in the logical sense. It is also testable nomologically. However, it is not currently feasible to test it.


Author(s):  
Thomas Glonek

AbstractHow life began still eludes science life, the initial progenote in the context presented herein, being a chemical aggregate of primordial inorganic and organic molecules capable of self-replication and evolution into ever increasingly complex forms and functions.Presented is a hypothesis that a mineral scaffold generated by geological processes and containing polymerized phosphate units was present in primordial seas that provided the initiating factor responsible for the sequestration and organization of primordial life’s constituents. Unlike previous hypotheses proposing phosphates as the essential initiating factor, the key phosphate described here is not a polynucleotide or just any condensed phosphate but a large (in the range of at least 1 kilo-phosphate subunits), water soluble, cyclic metaphosphate, which is a closed loop chain of polymerized inorganic phosphate residues containing only phosphate middle groups. The chain forms an intrinsic 4-phosphate helix analogous to its structure in Na Kurrol’s salt, and as with DNA, very large metaphosphates may fold into hairpin structures. Using a Holliday-junction-like scrambling mechanism, also analogous to DNA, rings may be manipulated (increased, decreased, exchanged) easily with little to no need for additional energy, the reaction being essentially an isomerization.A literature review is presented describing findings that support the above hypothesis. Reviewed is condensed phosphate inorganic chemistry including its geological origins, biological occurrence, enzymes and their genetics through eukaryotes, polyphosphate functions, circular polynucleotides and the role of the Holliday junction, previous biogenesis hypotheses, and an Eoarchean Era timeline.


2012 ◽  
pp. 774-791
Author(s):  
Takeyuki Tamura ◽  
Kazuhiro Takemoto ◽  
Tatsuya Akutsu

In this paper, the authors consider the problem of, given a metabolic network, a set of source compounds and a set of target compounds, finding a minimum size reaction cut, where a Boolean model is used as a model of metabolic networks. The problem has potential applications to measurement of structural robustness of metabolic networks and detection of drug targets. They develop an integer programming-based method for this optimization problem. In order to cope with cycles and reversible reactions, they further develop a novel integer programming (IP) formalization method using a feedback vertex set (FVS). When applied to an E. coli metabolic network consisting of Glycolysis/Glyconeogenesis, Citrate cycle and Pentose phosphate pathway obtained from KEGG database, the FVS-based method can find an optimal set of reactions to be inactivated much faster than a naive IP-based method and several times faster than a flux balance-based method. The authors also confirm that our proposed method works even for large networks and discuss the biological meaning of our results.


2021 ◽  
pp. 82-96
Author(s):  
Franklin M. Harold

The origin of life is the most consequential problem in biology, possibly in all of science, and it remains unsolved. This chapter summarizes what has been learned and highlights questions that remain open, including How, Where, When, and especially Why. LUCA, some four billion years ago, already featured the basic capacities of contemporary cells. These must have evolved still earlier, at a nebulous proto-cellular stage. There is good reason to believe that enzymes, DNA, ribosomes, electron-transport chains, and the rotary ATP synthase all predate LUCA and were shaped by the standard process of variation and natural selection, but we know next to nothing about how cells ever got started. I favor the proposal that it began with a purely chemical dynamic network capable of reproducing itself, that may have originated by chance. Natural selection would have favored the incorporation of any ancillary factors that promoted its kinetic stability, especially ones that improved reproduction or gave access to energy. All the specifics are in dispute, including the role of a prebiotic broth of organic chemicals, the nature and origin of enclosure, the RNA world, and a venue in submarine hydrothermal vents. My sense is that critical pieces of the puzzle remain to be discovered.


Author(s):  
David Ross

Over the past half century of serious research on the origin of life, several schools of thought have emerged that focus on “worlds” and what came first in the pathway to the origin of life. One example is the RNA World, a term coined by Walter Gilbert after the discovery of ribozymes. Other examples include the Iron-Sulfur World of Günther Wächtershäuser and the Lipid World proposed by Doron Lancet and coworkers. Then we have a competition between “metabolism first” and “replication first” schools. The worlds and schools have the positive effect of sharpening arguments and forcing us to think carefully, but they also can lock researchers into defending their individual approaches rather than looking for patterns in a larger perspective. One of the main themes of this book is the notion that the first living cells were systems of functional polymers working together within membranous compartments. Therefore, it is best not to think of “worlds” and “firsts” as fundamentals but instead as components evolving together toward the assembly of an encapsulated system of functional polymers. At first the polymers will be composed of random sequences of their monomers, and the compartments will contain random assortments of polymers. Here, we refer to these structures as protocells which are being produced in vast numbers as they form and decompose in continuous cycles driven by a variety of impinging, free-energy sources. This chapter describes how thermodynamic principles can be used to test the feasibility of a proposed mechanism by which random polymers can be synthesized. There is a current consensus that early life may have passed through a phase in which RNA served as a ribozyme catalyst, as a replicating system, and as a means for storing and expressing genetic information. For this reason, we will use RNA as a model polymer, but condensation reactions also produce peptide bonds and oligopeptides. At some point in the evolutionary steps leading to life, peptides and RNA formed complexes with novel functional properties beyond those of the individual molecular species.


Sign in / Sign up

Export Citation Format

Share Document