prebiotic earth
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 0)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Hui Lu ◽  
Honoka Aida ◽  
Masaomi Kurokawa ◽  
Feng Chen ◽  
Yang Xia ◽  
...  

AbstractThe morphology of primitive cells has been the subject of extensive research. A spherical form was commonly presumed in prebiotic studies but lacked experimental evidence in living cells. Whether and how the shape of living cells changed are unclear. Here we exposed the rod-shaped bacterium Escherichia coli to a resource utilization regime mimicking a primordial environment. Oleate was given as an easy-to-use model prebiotic nutrient, as fatty acid vesicles were likely present on the prebiotic Earth and might have been used as an energy resource. Six evolutionary lineages were generated under glucose-free but oleic acid vesicle (OAV)-rich conditions. Intriguingly, fitness increase was commonly associated with the morphological change from rod to sphere and the decreases in both the size and the area-to-volume ratio of the cell. The changed cell shape was conserved in either OAVs or glucose, regardless of the trade-offs in carbon utilization and protein abundance. Highly differentiated mutations present in the genome revealed two distinct strategies of adaption to OAV-rich conditions, i.e., either directly targeting the cell wall or not. The change in cell morphology of Escherichia coli for adapting to fatty acid availability supports the assumption of the primitive spherical form.



Astrobiology ◽  
2021 ◽  
Author(s):  
Sukrit Ranjan ◽  
Corinna L. Kufner ◽  
Gabriella G. Lozano ◽  
Zoe R. Todd ◽  
Azra Haseki ◽  
...  


2021 ◽  
Vol 9 ◽  
Author(s):  
Yeting Guo ◽  
Jianxi Ying ◽  
Dongru Sun ◽  
Yumeng Zhang ◽  
Minyang Zheng ◽  
...  

Cyclic dipeptides (DKPs) are peptide precursors and chiral catalysts in the prebiotic process. This study reports proline-containing DKPs that were spontaneously obtained from linear dipeptides under an aqueous solution. Significantly, the yields of DKPs were affected by the sequence of linear dipeptides and whether the reaction contains trimetaphosphate. These findings provide the possibility that DKPs might play a key role in the origin of life.



Author(s):  
Francisco Prosdocimi ◽  
Savio Torres Farias ◽  
Marco V José

The origin of life was a cosmic event happened on primitive Earth. A critical problem to better understand the origins of life in Earth is to glimpse in which chemical scenarios the basic building blocks of biological molecules could be produced. Classic works in pre-biotic chemistry frequently considered early Earth as a homogeneous atmosphere constituted by chemical elements such as methane (CH4), ammonia (NH3), water (H2O), hydrogen (H2) and hydrogen sulfide (H2S). Under that scenario, Stanley Miller was capable to produce amino acids and solved the question about the origin of proteins. Conversely, the origin of nucleic acids has tricked scientists for decades as nucleotides are complex though necessary molecules to allow the existence of life. Here we review possible chemical scenarios that allowed not only the formation of nucleotides but also other significant biomolecules. We aim to provide a theoretical solution for the origin of biomolecules at specific sites named “Prebiotic Chemical Refugia”. A prebiotic chemical refugium should therefore be understood as a geographic site in prebiotic Earth on which certain chemical elements were accumulated in higher proportion than expected, facilitating the production of basic biomolecules. Plus, this higher proportion should not be understood as static, but dynamic; once the physicochemical conditions of our planet changed periodically. This different concentration of elements, together with geochemical and astronomical changes along days, synodic months and years provided somewhat periodic changes in temperature, pressure, electromagnetic fields, and conditions of humidity; among other features. Recent and classic works suggesting most likely prebiotic refugia on which the main building blocks of biological molecules might be accumulated are reviewed and discussed.



2021 ◽  
Author(s):  
Ken Ohsaka

We propose a plausible oligomerization process of RNA nucleotides on prebiotic Earth. The process takes place at tideland and estuary where wet & dry cycle and pH fluctuation occur due to tide. The process proceeds with help of clay minerals that catalyze not only oligomerization but also cross complementary self-replication of RNA oligomers by lowering the activation energy of covalent bonding. The self-replication realizes transfer of molecular information and allows mutation and natural selection, essential steps of evolution of life.



2021 ◽  
Author(s):  
Moran Frenkel-Pinter ◽  
Marcos Bouza ◽  
Facundo M. Fernández ◽  
Luke J. Leman ◽  
Loren Dean Williams ◽  
...  

The condensation of building blocks into oligomers and polymers was an early and important stage in the origins of life. High activation energies, unfavorable thermodynamics and side reactions are bottlenecks for abiotic formation of peptides. Thioesters are hypothesized to have played key roles in prebiotic chemistry on early Earth, serving as energy storing molecules, as synthetic intermediates, and as catalysts in the formation of more complex molecules, including polypeptides. However, all abiotic reactions reported thus far for peptide formation via thioester intermediates have relied on activated building blocks or condensing agents, which are of questionable prebiotic relevance. We report robust, plausible prebiotic reactions of mercaptoacids with amino acids that result in the formation of peptides and thiodepsipeptides, which contain both peptide and thioester bonds. Peptide bond formation proceeds by the condensation of mercaptoacids to form thioesters followed by thioester-amide exchange. Mercaptoacids catalyze thiodepsipeptides and peptide formation under a wide range of pH conditions and at mild temperatures. Our results offer the most robust one-pot pathway for peptide formation ever reported. These results support the hypothesis that thiodepsipeptides formed robustly on prebiotic Earth and were possible contributors to early chemical evolution.



2021 ◽  
Author(s):  
Moran Frenkel-Pinter ◽  
Marcos Bouza ◽  
Facundo M. Fernández ◽  
Luke J. Leman ◽  
Loren Dean Williams ◽  
...  

The condensation of building blocks into oligomers and polymers was an early and important stage in the origins of life. High activation energies, unfavorable thermodynamics and side reactions are bottlenecks for abiotic formation of peptides. Thioesters are hypothesized to have played key roles in prebiotic chemistry on early Earth, serving as energy storing molecules, as synthetic intermediates, and as catalysts in the formation of more complex molecules, including polypeptides. However, all abiotic reactions reported thus far for peptide formation via thioester intermediates have relied on activated building blocks or condensing agents, which are of questionable prebiotic relevance. We report robust, plausible prebiotic reactions of mercaptoacids with amino acids that result in the formation of peptides and thiodepsipeptides, which contain both peptide and thioester bonds. Peptide bond formation proceeds by the condensation of mercaptoacids to form thioesters followed by thioester-amide exchange. Mercaptoacids catalyze thiodepsipeptides and peptide formation under a wide range of pH conditions and at mild temperatures. Our results offer the most robust one-pot pathway for peptide formation ever reported. These results support the hypothesis that thiodepsipeptides formed robustly on prebiotic Earth and were possible contributors to early chemical evolution.



2021 ◽  
Author(s):  
Manesh Prakash Joshi ◽  
Anupam A Sawant ◽  
Sudha Rajamani

Dynamic interplay between peptide synthesis and membrane assembly would have been crucial for the emergence of protocells on the prebiotic Earth. However, the effect of membrane-forming amphiphiles on peptide synthesis,...



2020 ◽  
Vol 118 (2) ◽  
pp. e2021117118
Author(s):  
Alexandra Navrotsky ◽  
Richard Hervig ◽  
James Lyons ◽  
Dong-Kyun Seo ◽  
Everett Shock ◽  
...  

Modern technology has perfected the synthesis of catalysts such as zeolites and mesoporous silicas using organic structure directing agents (SDA) and their industrial use to catalyze a large variety of organic reactions within their pores. We suggest that early in prebiotic evolution, synergistic interplay arose between organic species in aqueous solution and silica formed from rocks by dynamic dissolution–recrystallization. The natural organics, for example, amino acids, small peptides, and fatty acids, acted as SDA for assembly of functional porous silica structures that induced further polymerization of amino acids and peptides, as well as other organic reactions. Positive feedback between synthesis and catalysis in the silica–organic system may have accelerated the early stages of abiotic evolution by increasing the formation of polymerized species.



Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2046
Author(s):  
Dimas A. M. Zaia ◽  
Cássia Thaïs B. V. Zaia

The peptides/proteins of all living beings on our planet are mostly made up of 19 L-amino acids and glycine, an achiral amino acid. Arising from endogenous and exogenous sources, the seas of the prebiotic Earth could have contained a huge diversity of biomolecules (including amino acids), and precursors of biomolecules. Thus, how were these amino acids selected from the huge number of available amino acids and other molecules? What were the peptides of prebiotic Earth made up of? How were these peptides synthesized? Minerals have been considered for this task, since they can preconcentrate amino acids from dilute solutions, catalyze their polymerization, and even make the chiral selection of them. However, until now, this problem has only been studied in compartmentalized experiments. There are separate experiments showing that minerals preconcentrate amino acids by adsorption or catalyze their polymerization, or separate L-amino acids from D-amino acids. Based on the [GADV]-protein world hypothesis, as well as the relative abundance of amino acids on prebiotic Earth obtained by Zaia, several experiments are suggested. The main goal of these experiments is to show that using minerals it is possible, at least, to obtain peptides whose composition includes a high quantity of L-amino acids and protein amino acids (PAAs). These experiments should be performed using hydrothermal environments and wet/dry cycles. In addition, for hydrothermal environment experiments, it is very important to use one of the suggested artificial seawaters, and for wet/dry environments, it is important to perform the experiments in distilled water and diluted salt solutions. Finally, from these experiments, we suggest that, without an RNA world or even a pre genetic world, a small peptide set could emerge that better resembles modern proteins.



Sign in / Sign up

Export Citation Format

Share Document