Comparison of 15N-Labelled Glycine, Aspartate, Valine and Leucine for Measurement of Whole-Body Protein Turnover

1979 ◽  
Vol 57 (3) ◽  
pp. 281-283 ◽  
Author(s):  
M. Taruvinga ◽  
A. A. Jackson ◽  
M. H. N. Golden

1. Whole-body protein turnover was measured in rats by constant infusion of 15N-labelled glycine, aspartate, valine and leucine and measuring the enrichment of hepatic and renal urea and ammonia nitrogen. 2. The values obtained with [15N]glycine were comparable with values reported with methods based on different assumptions. 3. [15N]Aspartate gave rise to an increased enrichment of urea and ammonia and hence to lower protein-turnover rates. 4. [15N]Valine and [15N]leucine gave low enrichments of nitrogenous end products and hence to high protein-turnover rates. 5. All 15N-labelled amino acids are not equally suitable for measuring whole-body protein turnover by the end-product method. The relative amounts of 15N going to the end products can be predicted from the known individual metabolism of aspartate and the branched-chain amino acids.

1989 ◽  
Vol 67 (6) ◽  
pp. 624-628 ◽  
Author(s):  
P. Pencharz ◽  
J. Beesley ◽  
P. Sauer ◽  
J. Van Aerde ◽  
U. Canagarayar ◽  
...  

Protein turnover rates in neonates have been calculated largely by measuring urinary [15N]urea enrichment following administration of [15N]glycine. Although ammonia has been increasingly recognized as an end product of nitrogen metabolism, in neonates it yields a different estimate of protein turnover than does urea. Comparisons of ammonia and urea end products in parenterally fed neonates have not previously been reported. A third and independent way of estimating protein turnover, developed for adults, is to use breath 13CO2 as an end product following administration of [1-3C]leucine. We therefore carried out simultaneous measurements of protein turnover in 10 parenterally fed neonates, using the three end products. The infants were clinically stable, weighed 2.6 ± 0.2 kg, and received 3.1 ± 0.2 g∙kg−1∙d−1 of amino acid, 2.2 ± 0.1 g∙kg−1∙d−1 of lipids, and an energy intake of 90 ± 4 kcal∙kg−1∙d−1 (1 kcal = 4.186 kJ). The turnover estimates derived from the 13CO2 and [15N]urea end products were very similar. The [15N]ammonia end product produced values approximately 66% (p < 0.01) of the other two. We conclude that the ammonia and urea end products probably originate in different precursor pools. The similarity of the urea and breath carbon dioxide results helps validate the use of the urea end product in studying the nitrogen metabolism of parenterally fed neonates. Ideally in future studies two or more end products should be used, since they provide information about different aspects of the nenonates' protein metabolism.Key words: neonates, protein metabolism, nitrogen-15, [1-13C]leucine.


1997 ◽  
Vol 128 (2) ◽  
pp. 233-246 ◽  
Author(s):  
S. A. NEUTZE ◽  
J. M. GOODEN ◽  
V. H. ODDY

This study used an experimental model, described in a companion paper, to examine the effects of feed intake on protein turnover in the small intestine of lambs. Ten male castrate lambs (∼ 10 months old) were offered, via continuous feeders, either 400 (n = 5) or 1200 (n = 5) g/day lucerne chaff, and mean experimental liveweights were 28 and 33 kg respectively. All lambs were prepared with catheters in the cranial mesenteric vein (CMV), femoral artery (FA), jugular vein and abomasum, and a blood flow probe around the CMV. Cr-EDTA (0·139 mg Cr/ml, ∼ 0·2 ml/min) was infused abomasally for 24 h and L-[2,6-3H]phenylalanine (Phe) (420±9·35 μCi into the abomasum) and L-[U-14C]phenylalanine (49·6±3·59 μCi into the jugular vein) were also infused during the last 8 h. Blood from the CMV and FA was sampled during the isotope infusions. At the end of infusions, lambs were killed and tissue (n = 4) and digesta (n = 2) samples removed from the small intestine (SI) of each animal. Transfers of labelled and unlabelled Phe were measured between SI tissue, its lumen and blood, enabling both fractional and absolute rates of protein synthesis and gain to be estimated.Total SI mass increased significantly with feed intake (P < 0·05), although not on a liveweight basis. Fractional rates of protein gain in the SI tended to increase (P = 0·12) with feed intake; these rates were −16·2 (±13·7) and 23·3 (±15·2) % per day in lambs offered 400 and 1200 g/day respectively. Mean protein synthesis and fractional synthesis rates (FSR), calculated from the mean retention of 14C and 3H in SI tissue, were both positively affected by feed intake (0·01 < P < 0·05). The choice of free Phe pool for estimating precursor specific radioactivity (SRA) for protein synthesis had a major effect on FSR. Assuming that tissue free Phe SRA represented precursor SRA, mean FSR were 81 (±15) and 145 (±24) % per day in lambs offered 400 and 1200 g/day respectively. Corresponding estimates for free Phe SRA in the FA and CMV were 28 (±2·9) and 42 (±3·5) % per day on 400 g/day, and 61 (±2·9) and 94 (±6·0) on 1200 g/day. The correct value for protein synthesis was therefore in doubt, although indirect evidence suggested that blood SRA (either FA or CMV) may be closest to true precursor SRA. This evidence included (i) comparison with flooding dose estimates of FSR, (ii) comparison of 3H[ratio ]14C Phe SRA in free Phe pools with this ratio in SI protein, and (iii) the proportion of SI energy use associated with protein synthesis.Using the experimental model, the proportion of small intestinal protein synthesis exported was estimated as 0·13–0·27 (depending on the choice of precursor) and was unaffected by feed intake. The contribution of the small intestine to whole body protein synthesis tended to be higher in lambs offered 1200 g/day (0·21) than in those offered 400 g/day (0·13). The data obtained in this study suggested a role for the small intestine in modulating amino acid supply with changes in feed intake. At high intake (1200 g/day), the small intestine increases in mass and CMV uptake of amino acids is less than absorption from the lumen, while at low intake (400 g/day), this organ loses mass and CMV uptake of amino acids exceeds that absorbed. The implications of these findings are discussed.


1981 ◽  
Vol 61 (2) ◽  
pp. 217-228 ◽  
Author(s):  
E. B. Fern ◽  
P. J. Garlick ◽  
Margaret A. McNurlan ◽  
J. C. Waterlow

1. Four normal adults were given [15N]-glycine in a single dose either orally or intravenously. Rates of whole-body protein turnover were estimated from the excretion of 15N in ammonia and in urea during the following 9 h. The rate derived from urea took account of the [15N]urea retained in body water. 2. In postabsorptive subjects the rates of protein synthesis given by ammonia were equal to those from urea, when the isotope was given orally, but lower when an intravenous dose was given. 3. In subjects receiving equal portions of food every 2 h rates of synthesis calculated from ammonia were much lower than those from urea whether an oral or intravenous isotope was given. Comparison of rates obtained during the post-absorptive and absorptive periods indicated regulation by food intake primarily of synthesis when measurements were made on urea, but regulation primarily of breakdown when measurements were made on ammonia. 4. These inconsistencies suggest that changes in protein metabolism might be assessed better by correlating results given by different end-products, and it is suggested that the mean value given by urea and ammonia will be useful for this purpose.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2457 ◽  
Author(s):  
Jess A. Gwin ◽  
David D. Church ◽  
Robert R. Wolfe ◽  
Arny A. Ferrando ◽  
Stefan M. Pasiakos

Protein intake recommendations to optimally stimulate muscle protein synthesis (MPS) are derived from dose-response studies examining the stimulatory effects of isolated intact proteins (e.g., whey, egg) on MPS in healthy individuals during energy balance. Those recommendations may not be adequate during periods of physiological stress, specifically the catabolic stress induced by energy deficit. Providing supplemental intact protein (20–25 g whey protein, 0.25–0.3 g protein/kg per meal) during strenuous military operations that elicit severe energy deficit does not stimulate MPS-associated anabolic signaling or attenuate lean mass loss. This occurs likely because a greater proportion of the dietary amino acids consumed are targeted for energy-yielding pathways, whole-body protein synthesis, and other whole-body essential amino acid (EAA)-requiring processes than the proportion targeted for MPS. Protein feeding formats that provide sufficient energy to offset whole-body energy and protein-requiring demands during energy deficit and leverage EAA content, digestion, and absorption kinetics may optimize MPS under these conditions. Understanding the effects of protein feeding format-driven alterations in EAA availability and subsequent changes in MPS and whole-body protein turnover is required to design feeding strategies that mitigate the catabolic effects of energy deficit. In this manuscript, we review the effects, advantages, disadvantages, and knowledge gaps pertaining to supplemental free-form EAA, intact protein, and protein-containing mixed meal ingestion on MPS. We discuss the fundamental role of whole-body protein balance and highlight the importance of comprehensively assessing whole-body and muscle protein kinetics when evaluating the anabolic potential of varying protein feeding formats during energy deficit.


1989 ◽  
Vol 62 (2) ◽  
pp. 297-310 ◽  
Author(s):  
H. A. Abdul–Razzaq ◽  
R. Bickerstaffe

The effect of acetic or propionic acid rumen fermentation patterns on whole-body protein turnover, tissue protein synthetic rates and body composition was investigated in growing lambs. Protein turnover was assessed using a continuous intravenous infusion of [2,3-3H]tyrosine and tissue protein fractional synthetic rates (FSR) from the specific activities of plasma free, intracellular free and tissue bound tyrosine. Only the FSR of muscle tissue approached significance. The high FSR in the propionic group was attributed to the high plasma insulin concentration. Values for whole-body protein synthesis, corrected for tyrosine oxidation, were similar to those obtained by summating protein synthesis in individual tissues, confirming that tyrosine oxidation should be measured accurately if reliable whole-body protein synthesis values are required. Tyrosine oxidation and flux were high in the acetic acid group, suggesting that amino acids are used for gluconeogenesis. The high protein turnover rate probably ensures an adequate supply of gluconeogenic amino acids and that the penalty of mobilizing body proteins for gluconeogenic amino acids is minimal. In the propionic acid group, high plasma glucose and insulin concentrations were associated with a low protein turnover rate, high ratio of deposited: synthesized protein and a high body fat content. It is concluded that changing the proportion of ruminal volatile fatty acids influences protein turnover, protein synthesis and the efficiency of protein retention. Such factors probably contribute, indirectly, to the observed differences in body composition.


1986 ◽  
Vol 250 (6) ◽  
pp. E695-E701 ◽  
Author(s):  
S. Nissen ◽  
M. W. Haymond

Whole-body leucine and alpha-ketoisocaproate (KIC) metabolism were estimated in mature dogs fed a complete meal, a meal devoid of branched-chain amino acids, and a meal devoid of all amino acids. Using a constant infusion of [4,5-3H]leucine and alpha-[1-14C]ketoisocaproate (KIC), combined with dietary [5,5,5-2H3]leucine, the rate of whole-body proteolysis, protein synthesis, leucine oxidation, and interconversion of leucine and KIC were estimated along with the rate of leucine absorption. Ingestion of the complete meal resulted in a decrease in the rate of endogenous proteolysis, a small increase in the estimated rate of leucine entering protein, and a twofold increase in the rate of leucine oxidation. Ingestion of either the meal devoid of branched-chain amino acids or devoid of all amino acids resulted in a decrease in estimates of whole-body rates of proteolysis and protein synthesis, decreased leucine oxidation, and a decrease in the interconversion of leucine and KIC. The decrease in whole-body proteolysis was closely associated with the rise in plasma insulin concentrations following meal ingestion. Together these data suggest that the transition from tissue catabolism to anabolism is the result, at least in part, of decreased whole-body proteolysis. This meal-related decrease in proteolysis is independent of the dietary amino acid composition or content. In contrast, the rate of protein synthesis was sustained only when the meal complete in all amino acids was provided, indicating an overriding control of protein synthesis by amino acid availability.


1990 ◽  
Vol 78 (6) ◽  
pp. 621-628 ◽  
Author(s):  
F. Carli ◽  
J. Webster ◽  
V. Ramachandra ◽  
M. Pearson ◽  
M. Read ◽  
...  

1. The present study was designed in an attempt to resolve conflicting views currently in the literature relating to the effect of surgery on various aspects of protein metabolism. 2. Sequential post-operative (2, 4 and 6 days) changes in whole-body protein turnover, forearm arteriovenous difference of plasma amino acids, glucose, lactate and free fatty acids, muscle concentration of free amino acids, RNA and protein, urinary nitrogen and 3-methylhistidine, plasma concentrations of insulin, cortisol and growth hormone, and resting metabolic rate, were measured in six patients undergoing uncomplicated elective total abdominal hysterectomy. 3. All patients received a constant daily diet, either orally or intravenously, based on 0.1 g of nitrogen/kg and an energy content of 1.1 times the resting metabolic rate for 7 days before and 6 days after surgery. 4. Whole-body protein turnover, synthesis and breakdown increased significantly 2 days after surgery (P <0.05) and returned towards pre-operative levels thereafter. 5. Forearm release of branched-chain amino acids and alanine, and efflux of glucose and lactate, were enhanced 4 days after surgery (P <0.05). Muscle glutamine and alanine concentrations were decreased on the fourth and sixth days after surgery (P <0.05). The RNA/protein ratio (indicating the capacity for protein synthesis) was unaltered. 6. A significant increase in urinary nitrogen and 3-methylhistidine was observed on days 3 and 4 after surgery (P <0.05). Thereafter, these parameters remained elevated, although failing to reach statistical significance. 7. The resting metabolic rate was significantly increased (P <0.05) 2 days after surgery but the respiratory quotient (0.77) was unchanged. 8. These data support the contention that whole-body protein synthesis and breakdown increase after surgery. Differences observed pre- and post-operatively between leucine kinetic estimates and other methods of quantifying protein metabolism indicate that only like methodologies should be compared.


1989 ◽  
Vol 257 (5) ◽  
pp. E639-E646 ◽  
Author(s):  
C. Obled ◽  
F. Barre ◽  
D. J. Millward ◽  
M. Arnal

These studies were undertaken to determine to what extent constant infusion measurements and plasma sampling could provide sensible answers for rates of whole body protein turnover and also which amino acid would be the most representative probe of whole body protein turnover. Whole body protein synthesis rates were estimated in 70-g rats with L-[U-14C]threonine, L-[U-14C]lysine, L-[U-14C]tyrosine, L-[U-14C]phenylalanine, and L-[1-14C]leucine by either simultaneous tracer infusion of four amino acids or by injections of large quantities of 14C-labeled amino acids. In the infusion experiment, indirect estimates of whole body protein turnover based on free amino acid specific radioactivity and stochastic modeling were compared with direct measurement of the incorporation of the tracer into proteins. These two methods of analysis provided similar results for each amino acid, although in each case fractional synthesis rates were lower (by between 26 and 63%) when calculations were based on plasma rather than tissue specific radioactivity. With the flooding-dose method, whole body fractional protein synthesis rates were 41.4, 25.6, 31.1, and 31.4% with threonine, lysine, phenylalanine, and leucine, respectively. These values were similar to those obtained by the continuous infusion method using tissue specific radioactivity for threonine and lysine. For leucine, however, the flooding-dose method provided an intermediate value between the two estimates derived either from the plasma or the tissue specific radioactivity in the infusion method.(ABSTRACT TRUNCATED AT 250 WORDS)


DICP ◽  
1989 ◽  
Vol 23 (5) ◽  
pp. 411-416 ◽  
Author(s):  
Kathleen M. Teasley ◽  
Renee L. Buss

The critically ill, stressed patient has been characterized as having altered cellular metabolism. Altered protein metabolism is manifested as negative nitrogen balance, reduced whole-body protein synthesis, and increased proteolysis. An increased oxidation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine has also been observed. Exogenous administration of BCAA as part of a total parenteral nutrition (TPN) regimen has been proposed to compensate for the altered protein metabolism in the stressed patient by sparing endogenous sources of BCAA, thereby reducing skeletal muscle catabolism and increasing protein synthesis. Numerous clinical studies have been performed investigating this theory. The results are controversial. Differences in study outcomes appear to be related to study design, especially patient selection. Our review of those studies which were randomized, prospective, and controlled indicates that an improvement in nitrogen retention and visceral protein status can be achieved in stress-stratified patients who receive a TPN regimen containing a BCAA-enriched formula. The significance of these outcomes on morbidity, length of hospital stay, and mortality has not been evaluated.


Sign in / Sign up

Export Citation Format

Share Document