Effect of sodium chloride and sodium bicarbonate on blood pressure in stroke-prone spontaneously hypertensive rats

1988 ◽  
Vol 74 (6) ◽  
pp. 577-585 ◽  
Author(s):  
F. C. Luft ◽  
H. Steinberg ◽  
U. Ganten ◽  
D. Meyer ◽  
K. H. Gless ◽  
...  

1. To test the hypothesis that NaCl increases blood pressure, while NaHCO3 does not, we measured the effect of an NaHCO3-containing mineral water on blood pressure in stroke-prone spontaneously hypertensive (SHR-SP) and Wistar–Kyoto (WKY) rats. We compared mineral water with equimolar amounts of NaCl and demineralized drinking water in six groups of 20 rats each over 24 weeks. 2. NaCl consistently increased blood pressure in both SHR-SP and WKY compared with demineralized water, while mineral water did not. 3. We studied the possible role of sodium-regulating hormones. Sodium, potassium-dependent adenosine triphosphatase activity was decreased by NaCl and by age, but not by mineral water. The concentration of atrial natriuretic peptide was greater in SHR-SP, but was not influenced by the two regimens. Components of the renin–angiotensin–aldosterone system and 18-hydroxy-deoxycorticosterone tended to decrease with NaCl, but not with mineral water. 4. Plasma pH values in the six groups of rats were not different; however, SHR-SP had consistently lower Pco2 and HCO−3 values and higher anion gap values than WKY rats. These values were not influence by the two regimens. 5. NaCl elevates blood pressure in SHR-SP while NaHCO3 does not. The changes in hormones regulating sodium homoeostasis suggest that NaCl induces volume expansion while NaHCO3 does not. The effect may be related to influences on renal sodium reabsorption by chloride and bicarbonate. The possible role of increased proton excretory activity in SHR-SP remains to be determined.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
S. Bosnyak ◽  
R. E. Widdop ◽  
K. M. Denton ◽  
E. S. Jones

Angiotensin (1-7) (Ang (1-7)) causes vasodilator effects in Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) via angiotensin type 2 receptors (AT2R). However, the role of vascular AT2R in aging is not known. Therefore, we examined the effect of aging on Ang (1-7)-mediated vasodepressor effects and vascular angiotensin receptor localization in aging. Blood pressure was measured in conscious adult (~17 weeks) and aged (~19 months) normotensive rats that received drug combinations in a randomised fashion over a 4-day protocol: (i) Ang (1-7) alone, (ii) AT1R antagonist, candesartan, alone, (iii) Ang (1-7) and candesartan, or (iv) Ang-(1-7), candesartan, and the AT2R antagonist, PD123319. In a separate group of animals, the specificMasR antagonist, A779, was administered in place of PD123319. Receptor localisation was also assessed in aortic sections from adult and aged WKY rats by immunofluorescence. Ang (1-7) reduced blood pressure (~15 mmHg) in adult normotensive rats although this effect was dependant on the background dose of candesartan. This depressor effect was reversed by AT2R blockade. In aged rats, the depressor effect of Ang (1-7) was evident but was now inhibited by either AT2R blockade orMasR blockade. At the same time, AT2R,MasR, and ACE2 immunoreactivity was markedly elevated in aortic sections from aged animals. These results indicate that the Ang (1-7)-mediated depressor effect was preserved in aged animals. Whereas Ang (1-7) effects were mediated exclusively via stimulation of AT2R in adult WKY, with aging the vasodepressor effect of Ang (1-7) involved both AT2R andMasR.


1984 ◽  
Vol 66 (4) ◽  
pp. 421-426 ◽  
Author(s):  
Naftali Stern ◽  
Frances W. J. Beck ◽  
Donald Walt Chandler ◽  
Douglas M. Mayes ◽  
James R. Sowers

1. Sodium, potassium-dependent adenosine triphosphatase (ATPase) of the renal tubule is known to be dependent on both gluco- and mineralo-corticoids. Recent evidence suggests that corticosteroids may modulate ATPase activity at extrarenal sites. The myocardium contains glucocorticoid receptors to which mineralocorticoids can also bind. Thus, the possibility that myocardial ATPase is corticosteroid dependent was examined in the Wistar-Kyoto (WKY) normotensive rat and also in the spontaneously hypertensive (SH) rat, a strain previously shown to exhibit reduced myocardial ATPase activity. 2. WKY and SH rats (in groups of 10) were either sham operated or adrenalectomized and placed on 1% NaCl solution as drinking water. Adrenalectomized rats subsequently received daily intraperitoneal injections of either vehicle (1% NaCl, 0.5 ml), aldosterone (30 μg/kg) or dexamethasone (60 μg/kg). Renal cortical and myocardial ATPase activities were determined 21 days later in all groups. 3. Adrenalectomized WKY rats had reduced myocardial ATPase activity (5.15 ± 0.88 vs 8.18 ± 0.93 μmol of phosphate h−1 mg−1 of protein in controls; P < 0.01). This observed decrease in ATPase in adrenalectomized rats could be at least partly prevented by selective aldosterone or dexamethasone replacement. Parallel changes were observed with renal cortical ATPase. 4. SH rat myocardial ATPase was lower than in WKY rats (P<0.05, 5.88 ± 0.99 μmol of phosphate h−1 mg−1 of protein) and was unaffected by adrenalectomy (5.47 ± 0.68 μmol of phosphate h−1 mg−1 of protein) whether accompanied by aldosterone (6.08 ± 0.68 μmol of phosphate h−1 mg−1 of protein) or dexamethasone (6.47 ± 0.84 μmol of phosphate h−1 mg−1 of protein) therapy or not. Renal cortical ATPase, however, exhibited corticosteroid dependency in the SH rats that resembled the pattern observed in WKY rats. 5. It is suggested that the lower ATPase activity observed in SH rats after the evolution of hypertension may result from decreased sensitivity to endogenous corticosteroids.


1980 ◽  
Vol 59 (s6) ◽  
pp. 235s-237s ◽  
Author(s):  
R. W. Rockhold ◽  
J. T. Crofton ◽  
L. Share

1. The cardiovascular effects of an enkephalin analogue were examined in spontaneously hypertensive and normotensive Wistar-Kyoto rats. (D-Ala2)-methionine enkephalin caused a biphasic increase in blood pressure and an increase in heart rate after intracerebroventricular injection. 2. The initial pressor response to (D-Ala2)-methionine enkephalin was greater in hypertensive than in normotensive rats. No difference was noted between groups during the secondary pressor response. Heart rate increases paralleled the secondary increase in blood pressure. 3. Naloxone pretreatment abolished the secondary increase in blood pressure and the tachycardia, but did not blunt the initial pressor response in female Wistar-Kyoto rats. 4. Plasma levels of arginine vasopressin were depressed during the plateau phase of the pressor response in hypertensive rats given intracerebroventricular (d-Ala2)-methionine enkephalin. 5. The results suggest that the cardiovascular effects of central enkephalin are not due to vasopressin, but may involve activation of the sympathetic nervous system.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Sheon Mary ◽  
Philipp Boder ◽  
Giacomo Rossitto ◽  
Lesley Graham ◽  
Kayley Scott ◽  
...  

Abstract Background and Aims Uromodulin (UMOD) is the most abundant renal protein secreted into urine by the thick ascending epithelial (TAL) cells of the loop of Henle. Genetic studies have demonstrated an association between UMOD risk variants and hypertension. Studies on UMOD overexpressing transgenic mice have shown that UMOD increases the tubular salt reabsorption via enhanced NKCC2 activity. We aimed to dissect the effect of salt-loading and blood pressure on the excretion of UMOD. Method Wistar-Kyoto (WKY) and stroke-prone spontaneously hypertensive (SHRSP) rats (n=8/sex/strain) were maintained on 1% NaCl for three weeks. Salt-loaded SHRSP were treated with nifedipine. Tubule isolation and ex vivo incubation with nifedipine were used to assess its direct effect on TAL. Results Urinary UMOD excretion was significantly reduced after salt loading in both strains (figure). In salt-loaded SHRSP, nifedipine treatment reduced blood pressure and urinary UMOD excretion. The reductions in urinary UMOD excretion were dissociated from unchanged kidney UMOD protein and mRNA levels, however, were associated with UMOD endoplasmic reticulum accumulation, thus suggesting secretion as a key regulatory step. Ex vivo experiments with TAL tubules showed that nifedipine did not have a direct effect on UMOD secretion. Conclusion Our data suggest a direct effect of salt on UMOD secretion independent of blood pressure and a potential role of endoplasmic reticulum stress on the control of UMOD secretion. The role of UMOD as a cardiovascular risk marker deserves mechanistic reappraisal and further investigations based on our findings.


1985 ◽  
Vol 63 (10) ◽  
pp. 1258-1262 ◽  
Author(s):  
Corey B. Toal ◽  
Frans H. H. Leenen

Blood pressure responsiveness to iv noradrenaline and angiotensin II was studied in conscious, freely moving, age-matched spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats from 4 to 16 weeks of age. At 4 and 6 weeks the SHR showed small, but nonsignificant increases in responsiveness compared with WKY to both noradrenaline and angiotensin II. At 8 weeks they exhibited similar responses to the WKY. Subsequently, at 12 and 16 weeks decreased responsiveness to noradrenaline (nonsignificant) and angiotensin II (p < 0.05 at 12 and 16 weeks) was observed in SHR versus WKY. At 16 weeks of age, hexamethonium caused potentiation of the blood pressure response to noradrenaline and angiotensin II, but to the same degree in the two strains. Captopril at this age did not elicit potentiation to noradrenaline or angiotensin II in either strain. These results indicate that there is no rise in blood pressure responsiveness to circulating pressor agents, parallel to the development of hypertension in SHR. Increased receptor occupancy or more active attenuating reflexes in SHR versus WKY appear not to be involved in the absence of hyperresponsiveness in intact consious SHR at 16 weeks of age.


1999 ◽  
Vol 277 (4) ◽  
pp. R1057-R1062 ◽  
Author(s):  
Takahiro Nagayama ◽  
Takayuki Matsumoto ◽  
Makoto Yoshida ◽  
Mizue Suzuki-Kusaba ◽  
Hiroaki Hisa ◽  
...  

We investigated the role of nicotinic and muscarinic receptors in secretion of catecholamines induced by transmural electrical stimulation (ES) from isolated perfused adrenal glands of spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats. ES (1–10 Hz) produced frequency-dependent increases in epinephrine (Epi) and norepinephrine (NE) output as measured in perfusate. The ES-induced increases in NE output, but not Epi output, were significantly greater in adrenal glands of SHRs than in those of WKY rats. Hexamethonium (10–100 μM) markedly inhibited the ES-induced increases in Epi and NE output from adrenal glands of SHRs and WKY rats. Atropine (0.3–3 μM) inhibited the ES-induced increases in Epi and NE output from adrenal glands of SHRs, but not from those of WKY rats. These results suggest that endogenous acetylcholine-induced secretion of adrenal catecholamines is predominantly mediated by nicotinic receptors in SHRs and WKY rats and that the contribution of muscarinic receptors may be different between these two strains.


2003 ◽  
Vol 89 (4) ◽  
pp. 539-548 ◽  
Author(s):  
Sophie Robin ◽  
Véronique Maupoil ◽  
Frédérique Groubatch ◽  
Pascal Laurant ◽  
Alain Jacqueson ◽  
...  

The objectives of the present work were to evaluate the effect of a methionine-supplemented diet as a model of hyperhomocysteinaemia on the systolic blood pressure (BP) and vasomotor functions of aortic rings in Wistar–Kyoto (WKY) and spontaneously hypertensive rats (SHR). WKY and SHR rats, randomised into four groups, were fed a normal semisynthetic diet or a methionine (8 g/kg)-supplemented diet for 10 weeks. Systolic BP was measured non-invasively. At the end of the experiment, plasma homocysteine, methionine, cysteine and glutathione levels were determined. Vasoconstriction and vasodilatation of aortic rings were measured. The methionine-supplemented diet induced a significant increase in plasma homocysteine and methionine concentration in both WKY and SHR rats, an increase in plasma cysteine concentrations in WKY rats and an increase in the glutathione concentration in SHR. The systolic BP of WKY rats fed the methionine-supplemented diet increased significantly (P<0·01), whereas systolic BP was reduced in SHR. An enhanced aortic responsiveness to noradrenaline and a decreased relaxation induced by acetylcholine and bradykinin were observed in the WKY rats fed the methionine-enriched diet. In SHR, the bradykinin-induced relaxation was reduced, but the sodium nitroprusside response was increased. In conclusion, a methionine-enriched diet induced a moderate hyperhomocysteinaemia and an elevated systolic BP in WKY rats that was consistent with the observed endothelial dysfunction. In SHR, discrepancies between the decreased systolic BP and the vascular alterations suggest more complex interactions of the methionine-enriched diet on the systolic BP. Further investigations are needed to understand the paradoxical effect of a methionine-rich diet on systolic BP.


1978 ◽  
Vol 235 (4) ◽  
pp. H361-H366 ◽  
Author(s):  
J. T. Crofton ◽  
L. Share ◽  
R. E. Shade ◽  
C. Allen ◽  
D. Tarnowski

Because vasopressin is one of the most potent naturally occurring pressor agents, and because of its importance in the regulation of blood volume and composition, we have undertaken a study of the role of vasopressin in the pathogenesis of the hypertension in the Okamoto-Aoki spontaneously hypertension (SH) rat. In SH rats, systolic blood pressure increased from 135 +/- 3 (SE) mmHg at age 33 days to 184 +/- 3 mmHg at age 75 days (P less than 0.01). In the Wistar-Kyoto (WKY) control rats, blood pressure increased from 100 +/- 2 to 120 +/- 2 mmHg (P less than 0.01). The differences in blood pressure between the SH and WKY rats at all ages were significant (P less than 0.01). During the age period 33-75 days, the 24-h urinary excretion of vasopressin in the SH rat was consistently more than twofold greater (P less than 0.01) than in the WKY rat. Plasma vasopressin concentration and pituitary vasopressin content were also elevated in the SH rat (P less than 0.01 and P less than 0.02, respectively). Changes in systolic blood pressure in the SH rat, however, were not paralleled by changes in the urinary excretion of vasopressin. The data indicate that the secretion of vasopressin is elevated in the SH rat. However, the magnitude of this elevation, in and of itself, may not be sufficient to account for the rising blood pressure in the young SH rat.


2010 ◽  
Vol 30 (8) ◽  
pp. 1520-1526 ◽  
Author(s):  
Michelle J Porritt ◽  
Michelle Chen ◽  
Sarah SJ Rewell ◽  
Rachael G Dean ◽  
Louise M Burrell ◽  
...  

Angiotensin-converting enzyme (ACE) inhibition can reduce stroke risk by up to 43% in humans and reduce the associated disability, and hence understanding the mechanism of improvement is important. In animals and humans, these effects may be independent of the blood pressure-lowering effects of ACE inhibition. Normotensive (Wistar–Kyoto (WKY)) and hypertensive (spontaneously hypertensive rat (SHR)) animals were treated with the ACE inhibitors ramipril or lisinopril for 7 or 42 days before 2 hours of transient middle cerebral artery occlusion (MCAo). Blood pressure, serum ACE, and blood glucose levels were measured and stroke infarct volume was recorded 24 hours after stroke. Despite greater reductions in blood pressure, infarct size was not improved by ACE inhibition in hypertensive animals. Short-term ACE inhibition produced only a modest reduction in blood pressure, but WKY rats showed marked reductions in infarct volume. Long-term ACE inhibition had additional reductions in blood pressure; however, infarct volumes in WKY rats did not improve further but worsened. WKY rats differed from SHR in having marked cortical ACE activity that was highly sensitive to ACE inhibition. The beneficial effects of ACE inhibition on infarct volume in normotensive rats do not correlate with changes in blood pressure. However, WKY rats have ACE inhibitor-sensitive cortical ACE activity that is lacking in the SHR.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Rafael M Jeuken ◽  
Luciana V Rossoni

Structural, mechanical and functional adjustments occur in small mesenteric arteries (SMA) of hypertensive models. However, the role of these properties to trigger hypertension is unknown. As expected, the systolic blood pressure was higher in adult (A, 6-month old) male SHR as compared to Wistar-Kyoto rats (WKY) (WKYA: 125±1.1 vs SHRA: 187±3.3 mmHg*); however, it was similar in young (Y, 6-week old) SHR as compared to age-matched WKY (WKYY: 117±1.8 vs SHRY: 120±2.1 mmHg). The 3rd order mesenteric arteries were mounted in a pressure myograph to analyze the structural [lumen diameter (L), cross sectional area (CSA), wall/lumen ratio (W/L)] and mechanical properties [β, representing wall stiffness]. Endothelium-dependent relaxation to acetylcholine (ACh, 10-10-10-5 M) or -independent relaxation to sodium nitroprusside (SNP, 10-9-10-4 M) were evaluated in SMA using wire myography. At the passive condition (Ca2+-free solution) and intraluminal pressure of 160 mmHg, the L was lower in SMA of both SHR (WKYY: 294±12.0 vs SHRY: 241±4.3*; WKYA: 353±4.7 vs SHRA: 283±6.2 μm*); while the W/L ratio was higher in SHR as compared to age-matched WKY. CSA was similar between age-matched groups. β value was higher in SHR independently of age (WKYY: 5.8±0.4 vs. SHRY: 7.8±0.4*; WKYA: 4.7±0.1 vs SHRA: 6.7±0.4*). The collagen area evaluated by picrosirius red staining was higher in SMA of SHRA as compared to WKYA (WKYA: 15±2.4 vs SHRA: 26±1.8%*), but it did not change in young rats. ACh-induced maximal relaxation was similar in SMA from young groups (WKYY: 93±3.8 vs SHRY: 92±3.1%); however, in SHRA ACh elicited a biphasic curve inducing contraction at concentrations higher than 10-7M, which was not observed in WKYA. Relaxation to SNP did not change among groups. Reactive oxygen species analyzed by dihydroethidium was higher in SMA of SHRA as compared to WKYA (WKYA: 100±3.7 vs SHRA: 126±10.3% of integrated density*), but did not change in young SMA. Although SMA of SHRY present eutrophic inward remodeling and wall stiffening, it does not present collagen deposition, oxidative stress or endothelial dysfunction as observed in SHRA; suggesting that vascular remodeling and wall stiffness of SMA are not sufficient to trigger hypertension, at least when endothelial function is preserved.


Sign in / Sign up

Export Citation Format

Share Document