The thyroid hormone analogue SKF L-94901: nuclear occupancy and serum binding studies

1989 ◽  
Vol 76 (5) ◽  
pp. 495-501 ◽  
Author(s):  
John W. Barlow ◽  
Lorna E. Raggatt ◽  
Chen-Fee Lim ◽  
Sharon L. Munro ◽  
Duncan J. Topliss ◽  
...  

1. We studied a brominated thyroid hormone analogue, SKF L-94901, which has the potential to lower serum cholesterol without adverse cardiovascular effects. This compound is about 50% as active as tri-iodothyronine (T3) in liver nuclear receptor binding in vivo but only 1% as active in vitro and has nearly 200 times more enzyme-inducing activity in liver than in heart. Our aim was to examine the interaction of SKF L-94901 with [125I]T3 binding to the intact nuclei in whole cells, isolated nuclei and nuclear extracts of human HeLa cells and to investigate the binding of this compound to human serum. 2. Relative to thyroxine (T4), the affinity of this compound for T4-binding globulin was 0.0035%, for transthyretin 1.66% and for albumin 1.26%. Low affinity for serum proteins, with a relatively high circulating free fraction, could explain why SKF L-94901 is more potent in vivo than in vitro. 3. Human HeLa cell nuclei, isolated after whole-cell incubations, bound [125I]T3 with high affinity (Kd = 78 ± 8 pmol/l, mean ± sem), which was displaceable by T3 analogues in the order Triac {[4-(4-hydroxy-3-iodophenoxy)-3,5-di-iodophenyl]acetic acid} > T3 > T4 ≫ reverse T3. Similar high-affinity (Kd = 58 ± 6 pmol/l, mean ± sem) and identical specificity was observed in high-salt (0.4 mol/l KCl) nuclear extracts. In nuclei of whole cells incubated with [125I]T3 and SKF L-94901, the analogue was 0.8% as potent as T3, whereas in experiments with nuclear extract, the analogue was 7.7% as potent as T3. Results from incubation of T3 with isolated nuclei were virtually identical to those obtained with nuclear extracts. 4. These results suggest an extranuclear component may be involved in restricting access of SKF L-94901 to the nucleus. Whether such mechanisms account for observed differences in its effects on different tissues with reduced influence of SKF L-94901 on cardiac tissue remains to be established. 5. We conclude that SKF L-94901 is weakly bound in serum and shows less potent competition for T3 nuclear binding after incubation of whole cells than after incubation with nuclear extracts or isolated nuclei. This compound may allow further analysis of intracellular mechanisms of thyroid hormone transport and action.

1985 ◽  
Vol 100 (1) ◽  
pp. 64-73 ◽  
Author(s):  
C K Mitchell ◽  
D A Redburn

[3H]Serotonin is accumulated by a specific set of amacrine cells in the rabbit retina. These cells also accumulate the neurotoxin, 5,7-dihydroxytryptamine, and show signs of necrosis within 4 h of in vivo exposure to the drug. Biochemical analysis of [3H]serotonin uptake reveal a sodium- and temperature-dependent, high affinity uptake system with a Km of 0.94 microM and Vmax of 1.08 pmol/mg protein/min. [3H]Tryptophan is also accumulated in rabbit retinal homogenates by a high affinity process. Accumulated [3H]serotonin is released in response to potassium-induced depolarization of intact, isolated retinas. In vitro binding studies of rabbit retinal homogenate membranes demonstrate specific sets of binding sites with characteristics of the postsynaptic serotonin receptor. These data strongly suggest that rabbit retina contains virtually all of the molecular components required for a functional serotonergic neurotransmitter system. The only significant difference between the serotonin system in rabbit retina and that in the well-established serotonin transmitter systems in nonmammalin retinas and in brains of most species is the relatively low concentration of endogenous serotonin in rabbit retinas, as demonstrated by high-performance liquid chromatography, histofluorescence, or immunocytochemistry.


1992 ◽  
Vol 12 (6) ◽  
pp. 2662-2672
Author(s):  
Z Kozmik ◽  
S Wang ◽  
P Dörfler ◽  
B Adams ◽  
M Busslinger

The CD19 protein is expressed on the surface of all B-lymphoid cells with the exception of terminally differentiated plasma cells and has been implicated as a signal-transducing receptor in the control of proliferation and differentiation. Here we demonstrate complete correlation between the expression pattern of the CD19 gene and the B-cell-specific transcription factor BSAP in a large panel of B-lymphoid cell lines. The human CD19 gene has been cloned, and several BSAP-binding sites have been mapped by in vitro protein-DNA binding studies. In particular, a high-affinity BSAP-binding site instead of a TATA sequence is located in the -30 promoter region upstream of a cluster of heterogeneous transcription start sites. Moreover, this site is occupied by BSAP in vivo in a CD19-expressing B-cell line but not in plasma or HeLa cells. This high-affinity site has been conserved in the promoters of both human and mouse CD19 genes and was furthermore shown to confer B-cell specificity to a beta-globin reporter gene in transient transfection experiments. In addition, BSAP was found to be the only abundant DNA-binding activity of B-cell nuclear extracts that interacts with the CD19 promoter. Together, this evidence strongly implicates BSAP in the regulation of the CD19 gene.


1992 ◽  
Vol 12 (6) ◽  
pp. 2662-2672 ◽  
Author(s):  
Z Kozmik ◽  
S Wang ◽  
P Dörfler ◽  
B Adams ◽  
M Busslinger

The CD19 protein is expressed on the surface of all B-lymphoid cells with the exception of terminally differentiated plasma cells and has been implicated as a signal-transducing receptor in the control of proliferation and differentiation. Here we demonstrate complete correlation between the expression pattern of the CD19 gene and the B-cell-specific transcription factor BSAP in a large panel of B-lymphoid cell lines. The human CD19 gene has been cloned, and several BSAP-binding sites have been mapped by in vitro protein-DNA binding studies. In particular, a high-affinity BSAP-binding site instead of a TATA sequence is located in the -30 promoter region upstream of a cluster of heterogeneous transcription start sites. Moreover, this site is occupied by BSAP in vivo in a CD19-expressing B-cell line but not in plasma or HeLa cells. This high-affinity site has been conserved in the promoters of both human and mouse CD19 genes and was furthermore shown to confer B-cell specificity to a beta-globin reporter gene in transient transfection experiments. In addition, BSAP was found to be the only abundant DNA-binding activity of B-cell nuclear extracts that interacts with the CD19 promoter. Together, this evidence strongly implicates BSAP in the regulation of the CD19 gene.


2019 ◽  
Vol 18 ◽  
pp. 153601211982998 ◽  
Author(s):  
Elaine M. Jagoda ◽  
Olga Vasalatiy ◽  
Falguni Basuli ◽  
Ana Christina L. Opina ◽  
Mark R. Williams ◽  
...  

Objective: The goal is to evaluate avelumab, an anti-PD-L1 monoclonal immunoglobulin G antibody labeled with zirconium-89 in human PD-L1-expressing cancer cells and mouse xenografts for clinical translation. Methods: [89Zr]Zr-DFO-PD-L1 monoclonal antibody (mAb) was synthesized using avelumab conjugated to desferrioxamine. In vitro binding studies and biodistribution studies were performed with PD-L1+MDA-MB231 cells and MDA-MB231 xenograft mouse models, respectively. Biodistributions were determined at 1, 2, 3, 5, and 7 days post coinjection of [89Zr]Zr-DFO-PD-L1 mAb without or with unlabeled avelumab (10, 20, 40, and 400 µg). Results: [89Zr]Zr-DFO-PD-L1 mAb exhibited high affinity (Kd ∼ 0.3 nM) and detected moderate PD-L1 expression levels in MDA-MB231 cells. The spleen and lymph nodes exhibited the highest [89Zr]Zr-DFO-PD-L1 mAb uptakes in all time points, while MDA-MB231 tumor uptakes were lower but highly retained. In the unlabeled avelumab dose escalation studies, spleen tissue–muscle ratios decreased in a dose-dependent manner indicating specific [89Zr]Zr-DFO-PD-L1 mAb binding to PD-L1. In contrast, lymph node and tumor tissue–muscle ratios increased 4- to 5-fold at 20 and 40 µg avelumab doses. Conclusions: [89Zr]Zr-DFO-PD-L1 mAb exhibited specific and high affinity for PD-L1 in vitro and had target tissue uptakes correlating with PD-L1 expression levels in vivo. [89Zr]Zr-DFO-PD-L1 mAb uptake in PD-L1+tumors increased with escalating doses of avelumab.


2014 ◽  
Vol 5 ◽  
pp. 1699-1711 ◽  
Author(s):  
Wolfgang G Kreyling ◽  
Stefanie Fertsch-Gapp ◽  
Martin Schäffler ◽  
Blair D Johnston ◽  
Nadine Haberl ◽  
...  

When particles incorporated within a mammalian organism come into contact with body fluids they will bind to soluble proteins or those within cellular membranes forming what is called a protein corona. This binding process is very complex and highly dynamic due to the plethora of proteins with different affinities and fractions in different body fluids and the large variation of compounds and structures of the particle surface. Interestingly, in the case of nanoparticles (NP) this protein corona is well suited to provide a guiding vehicle of translocation within body fluids and across membranes. This NP translocation may subsequently lead to accumulation in various organs and tissues and their respective cell types that are not expected to accumulate such tiny foreign bodies. Because of this unprecedented NP accumulation, potentially adverse biological responses in tissues and cells cannot be neglected a priori but require thorough investigations. Therefore, we studied the interactions and protein binding kinetics of blood serum proteins with a number of engineered NP as a function of their physicochemical properties. Here we show by in vitro incubation tests that the binding capacity of different engineered NP (polystyrene, elemental carbon) for selected serum proteins depends strongly on the NP size and the properties of engineered surface modifications. In the following attempt, we studied systematically the effect of the size (5, 15, 80 nm) of gold spheres (AuNP), surface-modified with the same ionic ligand; as well as 5 nm AuNP with five different surface modifications on the binding to serum proteins by using proteomics analyses. We found that the binding of numerous serum proteins depended strongly on the physicochemical properties of the AuNP. These in vitro results helped us substantially in the interpretation of our numerous in vivo biokinetics studies performed in rodents using the same NP. These had shown that not only the physicochemical properties determined the AuNP translocation from the organ of intake towards blood circulation and subsequent accumulation in secondary organs and tissues but also the the transport across organ membranes depended on the route of AuNP application. Our in vitro protein binding studies support the notion that the observed differences in in vivo biokinetics are mediated by the NP protein corona and its dynamical change during AuNP translocation in fluids and across membranes within the organism.


2008 ◽  
Vol 28 (14) ◽  
pp. 4598-4608 ◽  
Author(s):  
Celine J. Guigon ◽  
Li Zhao ◽  
Changxue Lu ◽  
Mark C. Willingham ◽  
Sheue-yann Cheng

ABSTRACT We previously created a knock-in mutant mouse harboring a dominantly negative mutant thyroid hormone receptor β (TRβPV/PV mouse) that spontaneously develops a follicular thyroid carcinoma similar to human thyroid cancer. We found that β-catenin, which plays a critical role in oncogenesis, was highly elevated in thyroid tumors of TRβPV/PV mice. We sought to understand the molecular basis underlying aberrant accumulation of β-catenin by mutations of TRβ in vivo. Cell-based studies showed that thyroid hormone (T3) induced the degradation of β-catenin in cells expressing TRβ via proteasomal pathways. In contrast, no T3-induced degradation occurred in cells expressing the mutant receptor (TRβPV). In vitro binding studies and cell-based analyses revealed that β-catenin physically associated with unliganded TRβ or TRβPV. However, in the presence of T3, β-catenin was dissociated from TRβ-β-catenin complexes but not from TRβPV-β-catenin complexes. β-Catenin signaling was repressed by T3 in TRβ-expressing cells through decreasing β-catenin-mediated transcription activity and target gene expression, whereas sustained β-catenin signaling was observed in TRβPV-expressing cells. The stabilization of β-catenin, via association with a mutated TRβ, represents a novel activating mechanism of the oncogenic protein β-catenin that could contribute to thyroid carcinogenesis in TRβPV/PV mice.


1982 ◽  
Vol 47 (03) ◽  
pp. 244-248 ◽  
Author(s):  
D P Thomas ◽  
Rosemary E Merton ◽  
T W Barrowcliffe ◽  
L Thunberg ◽  
U Lindahl

SummaryThe in vitro and in vivo characteristics of two oligosaccharide heparin fragments have been compared to those of unfractionated mucosal heparin. A decasaccharide fragment had essentially no activity by APTT or calcium thrombin time assays in vitro, but possessed very high specific activity by anti-Factor Xa assays. When injected into rabbits at doses of up to 80 ¼g/kg, this fragment was relatively ineffective in impairing stasis thrombosis despite producing high blood levels by anti-Xa assays. A 16-18 monosaccharide fragment had even higher specific activity (almost 2000 iu/mg) by chromogenic substrate anti-Xa assay, with minimal activity by APTT. When injected in vivo, this fragment gave low blood levels by APTT, very high anti-Xa levels, and was more effective in preventing thrombosis than the decasaccharide fragment. However, in comparison with unfractionated heparin, the 16-18 monosaccharide fragment was only partially effective in preventing thrombosis, despite producing much higher blood levels by anti-Xa assays.It is concluded that the high-affinity binding of a heparin fragment to antithrombin III does not by itself impair venous thrombogenesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential.


2020 ◽  
Vol 8 (10) ◽  
pp. 1627
Author(s):  
Tecla Ciociola ◽  
Pier Paolo Zanello ◽  
Tiziana D’Adda ◽  
Serena Galati ◽  
Stefania Conti ◽  
...  

The growing problem of antimicrobial resistance highlights the need for alternative strategies to combat infections. From this perspective, there is a considerable interest in natural molecules obtained from different sources, which are shown to be active against microorganisms, either alone or in association with conventional drugs. In this paper, peptides with the same sequence of fragments, found in human serum, derived from physiological proteins, were evaluated for their antifungal activity. A 13-residue peptide, representing the 597–609 fragment within the albumin C-terminus, was proved to exert a fungicidal activity in vitro against pathogenic yeasts and a therapeutic effect in vivo in the experimental model of candidal infection in Galleria mellonella. Studies by confocal microscopy and transmission and scanning electron microscopy demonstrated that the peptide penetrates and accumulates in Candida albicans cells, causing gross morphological alterations in cellular structure. These findings add albumin to the group of proteins, which already includes hemoglobin and antibodies, that could give rise to cryptic antimicrobial fragments, and could suggest their role in anti-infective homeostasis. The study of bioactive fragments from serum proteins could open interesting perspectives for the development of new antimicrobial molecules derived by natural sources.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


Sign in / Sign up

Export Citation Format

Share Document