scholarly journals Immuno-PET Imaging of the Programmed Cell Death-1 Ligand (PD-L1) Using a Zirconium-89 Labeled Therapeutic Antibody, Avelumab

2019 ◽  
Vol 18 ◽  
pp. 153601211982998 ◽  
Author(s):  
Elaine M. Jagoda ◽  
Olga Vasalatiy ◽  
Falguni Basuli ◽  
Ana Christina L. Opina ◽  
Mark R. Williams ◽  
...  

Objective: The goal is to evaluate avelumab, an anti-PD-L1 monoclonal immunoglobulin G antibody labeled with zirconium-89 in human PD-L1-expressing cancer cells and mouse xenografts for clinical translation. Methods: [89Zr]Zr-DFO-PD-L1 monoclonal antibody (mAb) was synthesized using avelumab conjugated to desferrioxamine. In vitro binding studies and biodistribution studies were performed with PD-L1+MDA-MB231 cells and MDA-MB231 xenograft mouse models, respectively. Biodistributions were determined at 1, 2, 3, 5, and 7 days post coinjection of [89Zr]Zr-DFO-PD-L1 mAb without or with unlabeled avelumab (10, 20, 40, and 400 µg). Results: [89Zr]Zr-DFO-PD-L1 mAb exhibited high affinity (Kd ∼ 0.3 nM) and detected moderate PD-L1 expression levels in MDA-MB231 cells. The spleen and lymph nodes exhibited the highest [89Zr]Zr-DFO-PD-L1 mAb uptakes in all time points, while MDA-MB231 tumor uptakes were lower but highly retained. In the unlabeled avelumab dose escalation studies, spleen tissue–muscle ratios decreased in a dose-dependent manner indicating specific [89Zr]Zr-DFO-PD-L1 mAb binding to PD-L1. In contrast, lymph node and tumor tissue–muscle ratios increased 4- to 5-fold at 20 and 40 µg avelumab doses. Conclusions: [89Zr]Zr-DFO-PD-L1 mAb exhibited specific and high affinity for PD-L1 in vitro and had target tissue uptakes correlating with PD-L1 expression levels in vivo. [89Zr]Zr-DFO-PD-L1 mAb uptake in PD-L1+tumors increased with escalating doses of avelumab.

2020 ◽  
Author(s):  
Chuan-jiang Liu ◽  
Qiang Fu ◽  
Wenjing Zhou ◽  
Xu Zhang ◽  
Rui Chen ◽  
...  

Abstract Background: Methylprednisolone (MP) is a synthetic corticosteroid with potent anti-inflammatory and antioxidant properties used as therapy for a variety of diseases. The underlying mechanism of MP to reduce acute pancreatitis still needs to be elucidated.Methods: Twenty-four male C57BL/6 mice (6-8 weeks) were used to establish SAP mouse model by administering an intraperitoneal injection of Cae and LPS. Amylase expression levels of serum and PLF were measured with an amylase assay kit. The concentrations of IL-1β and TNF-α in the serum and PLF were detected by ELISA. The level of pancreatic and lung tissue damage and inflammation was assessed by H&E staining and immunofluorescence staining. Western blot and qPCR were used to detect the expression levels of NLRP3, IL-1β and TNF-αin vivo and in vitro.Results: In this study, we found MP, used in the early phase of SAP, decreased the levels of IL-1β and TNF-α in serum and peritoneal lavage fluids (PLF), reduced the level of serum amylase and the expression of MPO in lung tissue, attenuated the pathological injury of the pancreas and lungs in a dose-dependent manner. The expression of NLRP3 and IL-1β in pancreas and lungs was down-regulated significantly depending on the MP concentration. In vitro, MP reduced the levels of IL-1β and TNF-α by down-regulating the expression of NLRP3, IL-1β and p-NF-κB in isolated peritoneal macrophages. Conclusion: MP can attenuate the injury of pancreas and lungs, and the inflammatory response in SAP mice by down-regulating the activation of NF-κB and the NLRP3 inflammasome.


1985 ◽  
Vol 100 (1) ◽  
pp. 64-73 ◽  
Author(s):  
C K Mitchell ◽  
D A Redburn

[3H]Serotonin is accumulated by a specific set of amacrine cells in the rabbit retina. These cells also accumulate the neurotoxin, 5,7-dihydroxytryptamine, and show signs of necrosis within 4 h of in vivo exposure to the drug. Biochemical analysis of [3H]serotonin uptake reveal a sodium- and temperature-dependent, high affinity uptake system with a Km of 0.94 microM and Vmax of 1.08 pmol/mg protein/min. [3H]Tryptophan is also accumulated in rabbit retinal homogenates by a high affinity process. Accumulated [3H]serotonin is released in response to potassium-induced depolarization of intact, isolated retinas. In vitro binding studies of rabbit retinal homogenate membranes demonstrate specific sets of binding sites with characteristics of the postsynaptic serotonin receptor. These data strongly suggest that rabbit retina contains virtually all of the molecular components required for a functional serotonergic neurotransmitter system. The only significant difference between the serotonin system in rabbit retina and that in the well-established serotonin transmitter systems in nonmammalin retinas and in brains of most species is the relatively low concentration of endogenous serotonin in rabbit retinas, as demonstrated by high-performance liquid chromatography, histofluorescence, or immunocytochemistry.


1989 ◽  
Vol 76 (5) ◽  
pp. 495-501 ◽  
Author(s):  
John W. Barlow ◽  
Lorna E. Raggatt ◽  
Chen-Fee Lim ◽  
Sharon L. Munro ◽  
Duncan J. Topliss ◽  
...  

1. We studied a brominated thyroid hormone analogue, SKF L-94901, which has the potential to lower serum cholesterol without adverse cardiovascular effects. This compound is about 50% as active as tri-iodothyronine (T3) in liver nuclear receptor binding in vivo but only 1% as active in vitro and has nearly 200 times more enzyme-inducing activity in liver than in heart. Our aim was to examine the interaction of SKF L-94901 with [125I]T3 binding to the intact nuclei in whole cells, isolated nuclei and nuclear extracts of human HeLa cells and to investigate the binding of this compound to human serum. 2. Relative to thyroxine (T4), the affinity of this compound for T4-binding globulin was 0.0035%, for transthyretin 1.66% and for albumin 1.26%. Low affinity for serum proteins, with a relatively high circulating free fraction, could explain why SKF L-94901 is more potent in vivo than in vitro. 3. Human HeLa cell nuclei, isolated after whole-cell incubations, bound [125I]T3 with high affinity (Kd = 78 ± 8 pmol/l, mean ± sem), which was displaceable by T3 analogues in the order Triac {[4-(4-hydroxy-3-iodophenoxy)-3,5-di-iodophenyl]acetic acid} > T3 > T4 ≫ reverse T3. Similar high-affinity (Kd = 58 ± 6 pmol/l, mean ± sem) and identical specificity was observed in high-salt (0.4 mol/l KCl) nuclear extracts. In nuclei of whole cells incubated with [125I]T3 and SKF L-94901, the analogue was 0.8% as potent as T3, whereas in experiments with nuclear extract, the analogue was 7.7% as potent as T3. Results from incubation of T3 with isolated nuclei were virtually identical to those obtained with nuclear extracts. 4. These results suggest an extranuclear component may be involved in restricting access of SKF L-94901 to the nucleus. Whether such mechanisms account for observed differences in its effects on different tissues with reduced influence of SKF L-94901 on cardiac tissue remains to be established. 5. We conclude that SKF L-94901 is weakly bound in serum and shows less potent competition for T3 nuclear binding after incubation of whole cells than after incubation with nuclear extracts or isolated nuclei. This compound may allow further analysis of intracellular mechanisms of thyroid hormone transport and action.


1992 ◽  
Vol 12 (6) ◽  
pp. 2662-2672
Author(s):  
Z Kozmik ◽  
S Wang ◽  
P Dörfler ◽  
B Adams ◽  
M Busslinger

The CD19 protein is expressed on the surface of all B-lymphoid cells with the exception of terminally differentiated plasma cells and has been implicated as a signal-transducing receptor in the control of proliferation and differentiation. Here we demonstrate complete correlation between the expression pattern of the CD19 gene and the B-cell-specific transcription factor BSAP in a large panel of B-lymphoid cell lines. The human CD19 gene has been cloned, and several BSAP-binding sites have been mapped by in vitro protein-DNA binding studies. In particular, a high-affinity BSAP-binding site instead of a TATA sequence is located in the -30 promoter region upstream of a cluster of heterogeneous transcription start sites. Moreover, this site is occupied by BSAP in vivo in a CD19-expressing B-cell line but not in plasma or HeLa cells. This high-affinity site has been conserved in the promoters of both human and mouse CD19 genes and was furthermore shown to confer B-cell specificity to a beta-globin reporter gene in transient transfection experiments. In addition, BSAP was found to be the only abundant DNA-binding activity of B-cell nuclear extracts that interacts with the CD19 promoter. Together, this evidence strongly implicates BSAP in the regulation of the CD19 gene.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3435-3435
Author(s):  
Kazuhiro Abeyama ◽  
Yasushi Yoshimoto ◽  
Ikuro Maruyama

Abstract Thrombomodulin (TM) is an endothelial anticoagulant cofactor that promotes thrombin-mediated formation of activated protein C (APC), the latter an enzyme with potent anti-coagulant and anti-inflammatory properties. We have found that the N-terminal, lectin-like domain (D1) of thrombomodulin has unique anti-inflammatory properties. Thrombomodulin, via D1, binds high mobility group-B1 DNA binding protein (HMGB1), a factor closely associated with necrotic cell damage following its release from the nucleus, thereby preventing leukocyte activation in vitro, and ultraviolet radiation-induced cutaneous inflammation and lipopolysaccharide-induced lethality in vivo. Our data also demonstrate anti-inflammatory properties of a peptide spanning the D1 domain of TM and suggest its therapeutic potential. These findings highlight a novel mechanism through which an endothelial cofactor, TM, suppresses inflammation; i.e., sequestration of mediators thereby preventing their interaction with cell surface receptors on effector cells in the vasculature. Results: TM binds HMGB1 and prevents expression of pro-inflammatory activity. Our co-culture studies of leukocytes and HUVEC, and results in the cutaneous irritation model suggested that early release of a mediator, such as HMGB1, might contribute importantly to cellular activation in inflammation at later time points. In this context, TM might have the ability to decrease HMGB1-mediated inflammatory events. Binding studies using surface plasmon resonance (SPR), performed to directly assess the interaction of TM and immobilized HMGB1, demonstrated dose-dependent binding in the nanomolar range (Kd ~232 nM). Furthermore, addition of rhs-TM decreased, in a dose-dependent manner, the binding of HMGB1 to RAGE through the its N-terminal domain, but not anti-coagulant domain. TM and the N-terminal-derived TM peptide have anti-inflammatory effects in settings where HMGB1 is a likely key mediator. In HMGB1-mediated skin inflammation model, systemic administration of rhs-TM, its lectin-like domain and sRAGE resulted in a significant blunting of the inflammatory response. In contrast, the effect of anti-coagulant domain, although showing a trend toward decreased ear swelling, did not achieve statistical significance (anticoagulant domain has anti-inflammatory effects in vivo that probably reflect its ability to support thrombin-mediated activation of protein C; the latter does not occur in vitro after inactivation of the protein C zymogen by heat treatment). In view of recent data suggesting a link between HMGB1 released from injured tissue and endotoxin-induced lethality in mice, we also tested whether rhs-TM and its lectin-like domain might also have protective effects in this model. We employed a dose of intraperitoneal (IP) LPS (10 mg/kg) resulting in 100% lethality by 96 hrs. Systemic (IP) treatment of animals with anti-HMGB1 IgY had a protective effect with respect to lethality at 4 days, whereas the same regimen of nonimmune IgY was without effect. Similarly, IP administration of rhs-TM and its N-teminal lectin domain, but not anti-coagulant domain had complete protective effects compared with anti-HMGB1 IgY. Conclusion: Our findings have elucidated an unexpected anti-inflammatory property of TM residing in the D1 domain, namely binding of HMGB1.


1992 ◽  
Vol 12 (6) ◽  
pp. 2662-2672 ◽  
Author(s):  
Z Kozmik ◽  
S Wang ◽  
P Dörfler ◽  
B Adams ◽  
M Busslinger

The CD19 protein is expressed on the surface of all B-lymphoid cells with the exception of terminally differentiated plasma cells and has been implicated as a signal-transducing receptor in the control of proliferation and differentiation. Here we demonstrate complete correlation between the expression pattern of the CD19 gene and the B-cell-specific transcription factor BSAP in a large panel of B-lymphoid cell lines. The human CD19 gene has been cloned, and several BSAP-binding sites have been mapped by in vitro protein-DNA binding studies. In particular, a high-affinity BSAP-binding site instead of a TATA sequence is located in the -30 promoter region upstream of a cluster of heterogeneous transcription start sites. Moreover, this site is occupied by BSAP in vivo in a CD19-expressing B-cell line but not in plasma or HeLa cells. This high-affinity site has been conserved in the promoters of both human and mouse CD19 genes and was furthermore shown to confer B-cell specificity to a beta-globin reporter gene in transient transfection experiments. In addition, BSAP was found to be the only abundant DNA-binding activity of B-cell nuclear extracts that interacts with the CD19 promoter. Together, this evidence strongly implicates BSAP in the regulation of the CD19 gene.


2014 ◽  
Vol 82 (4) ◽  
pp. 1559-1571 ◽  
Author(s):  
Mark J. White ◽  
Jeffrey M. Boyd ◽  
Alexander R. Horswill ◽  
William M. Nauseef

ABSTRACTStaphylococcus aureusis an important human pathogen that employs a large repertoire of secreted virulence factors to promote disease pathogenesis. Many strains ofS. aureuspossess aplcgene that encodes a phosphatidylinositol (PI)-specific phospholipase C (PI-PLC) capable of hydrolyzing PI and cleaving glycosyl-PI (GPI)-linked proteins from cell surfaces. Despite being secreted by virulent staphylococci, the contribution of PI-PLC to the capacity ofS. aureusto cause disease remains undefined. Our goal in these studies was to understand PI-PLC in the context ofS. aureusbiology. Among a collection of genetically diverse clinical isolates ofS. aureus, community-associated methicillin-resistantS. aureus(CA-MRSA) USA300 secreted the most PI-PLC. Screening a collection of two-component system (TCS) mutants ofS. aureus, we identified both theagrquorum-sensing system and the SrrAB TCS to be positive regulators ofplcgene expression. Real-time PCR and PI-PLC enzyme assays of the TCS mutants, coupled with SrrA promoter binding studies, demonstrated that SrrAB was the predominant transcriptional activator ofplc. Furthermore,plcregulation was linked to oxidative stress bothin vitroandin vivoin a SrrAB-dependent manner. A Δplcmutant in a CA-MRSA USA300 background exhibited a survival defect in human whole blood and in isolated neutrophils. However, the same mutant strain displayed no survival defect in murine models of infection or murine whole blood. Overall, these data identify potential links between bacterial responses to the host innate immune system and to oxidative stress and suggest how PI-PLC could contribute to the pathogenesis ofS. aureusinfections.


1993 ◽  
Vol 10 (3) ◽  
pp. 259-268 ◽  
Author(s):  
B Gallwitz ◽  
M Witt ◽  
U R Fölsch ◽  
W Creutzfeldt ◽  
W E Schmidt

ABSTRACT Glucagon-like peptide-1(7–36)amide (GLP-1(7–36) amide) and gastric inhibitory polypeptide (GIP), peptides of the glucagon family, stimulate insulin secretion in vitro and in vivo. They possess high N-terminal sequence homology. Binding studies with 125I-labelled GIP and 125I-labelled GLP-1(7– 36)amide were performed in RINm5F insulinoma cells to investigate receptor specificity and to compare both receptors directly. Both binding sites were highly ligand-specific: GIP did not bind to the GLP-1(7–36)amide receptor and vice versa. Both peptides increased intracellular cyclic AMP levels; GLP-1(7– 36)amide was 100-fold more potent in stimulating cyclic AMP production when compared with GIP. At ranges of 1–10 nmol GLP-1(7–36)amide/1 and 0·1–10 GIP/1, corresponding to submaximal binding concentrations, the hormones showed an additive effect on cyclic AMP production. The N-terminal portion of GIP was important for binding, as GIP(1–30) showed almost full binding and biological activity. GIP(17–42) bound in a concentration-dependent manner with approximately 500-fold lower potency than GIP. At concentrations of up to 10 μmol GIP(17–42)/1 no stimulation of cyclic AMP was observed.


2010 ◽  
Vol 49 (03) ◽  
pp. 97-105 ◽  
Author(s):  
S. M. Börner ◽  
T. Fischer ◽  
H. Hansen ◽  
R. Schnell ◽  
B. Zimmermanns ◽  
...  

Summary Objectives: Comparison of the binding affinity to a CD30-positive Hodgkin lymphoma (HL) cell line and biodistribution in HL bearing mice of new anti-CD30 radioimmunoconjugates (RICs) of varying structure and labelling nuclides. Methods: The antibodies Ki-4 and 5F11 were radioiodinated by the chloramine T method or labelled with 111In via p-NCSBenzyl- DOTA. In addition, the Ki-4-dimer was investigated in the iodinated form. The RICs were analyzed for retained immunoreactivity by immunochromatography. In-vitro binding studies were performed on CD30-positive L540 cell lines. For in-vivo biodistribution studies, SCID mice bearing human HL xenografts were injected with the various radioimmunoconjugates. After 24 h, activities in the organs and tumour were measured for all 5 RICs. Tumour-free animals were studied in the same way with 131I- Ki-4 24 h p. i. The three RICs with the highest tumour/background ratios 24 h p.i. (131I-Ki-4, 131I–5F11, 111In-bz- DOTA-Ki-4) were analysed further at 48 h and 72 h. Results: All the RICs were successfully labelled with high specific activities (28–47 TBq/ mmol) and sufficient radiochemical yields (> 80%). Scatchard plot analysis proved high tumour affinity (KD = 20–220 nmol/l). In-vivo tumour accumulation in % of injected dose per g tissue (%ID/g) lay between 2.6 (131I-5F11) and 12.3 % ID/g (131I-Ki-4) with permanently high background in blood. Tumour/blood-ratios of all RICs were below one at all time points. Conclusions: In-vitro tumour cell affinities of all RICs were promising. However, in-vivo biokinetics tested in the mouse model did not meet expectations. This highlights the importance of developing and testing further new anti-CD30 conjugates.


2008 ◽  
Vol 190 (15) ◽  
pp. 5172-5177 ◽  
Author(s):  
Indu Sangwan ◽  
Sandra K. Small ◽  
Mark R. O'Brian

ABSTRACT The Irr protein is a global regulator of iron homeostasis in Bradyrhizobium japonicum, and a subset of genes within the Irr regulon are negatively controlled under iron limitation. However, repressor function, high-affinity DNA binding in vitro, or promoter occupancy in vivo of Irr for a negatively regulated gene has not been demonstrated. Here, we show that the blr7895 and bll6680 genes are negatively regulated by Irr as determined by derepression of transcript levels in iron-limited cells of an irr mutant strain. Electrophoretic gel mobility shift analysis showed that a component in extracts of wild-type cells grown under iron limitation bound the iron control elements (ICE) within the promoters of blr7895 and bll6680 identified previously (G. Rudolph, G. Semini, F. Hauser, A. Lindemann, M. Friberg, H. Hennecke, and H. M. Fischer, J. Bacteriol. 188:733-744, 2006). Binding was not observed with extracts of cells from the parent strain grown under high iron conditions or with those from an irr mutant. Furthermore, gel mobility supershift experiments identified Irr as a component of the binding complex. Purified recombinant Irr bound to ICE DNA with high affinity in the presence of divalent metal, with K d values of 7 to 19 nM, consistent with a physiological role for Irr as a transcriptional regulator. In addition, in vitro transcription initiated from the blr7895 promoter was inhibited by Irr. Whole-cell cross-linking and immunoprecipitation experiments showed that Irr occupies the promoters of blr7895 and bll6680 in vivo in an iron-dependent manner. The findings demonstrate that Irr is a transcriptional repressor that binds DNA with high affinity.


Sign in / Sign up

Export Citation Format

Share Document