Clinical and pathological features of fat embolism with acute respiratory distress syndrome

2007 ◽  
Vol 113 (6) ◽  
pp. 279-285 ◽  
Author(s):  
Shang Jyh Kao ◽  
Diana Yu-Wung Yeh ◽  
Hsing I. Chen

FES (fat embolism syndrome) is a clinical problem, and, although ARDS (acute respiratory distress syndrome) has been considered as a serious complication of FES, the pathogenesis of ARDS associated with FES remains unclear. In the present study, we investigated the clinical manifestations, and biochemical and pathophysiological changes, in subjects associated with FES and ARDS, to elucidate the possible mechanisms involved in this disorder. A total of eight patients with FES were studied, and arterial blood pH, PaO2 (arterial partial pressure of O2), PaCO2 (arterial partial pressure of CO2), biochemical and pathophysiological data were obtained. These subjects suffered from crash injuries and developed FES associated with ARDS, and each died within 2 h after admission. In the subjects, chest radiography revealed that the lungs were clear on admission, and pulmonary infiltration was observed within 2 h of admission. Arterial blood pH and PaO2 declined, whereas PaCO2 increased. Plasma PLA2 (phospholipase A2), nitrate/nitrite, methylguanidine, TNF-α (tumour necrosis factor-α), IL-1β (interleukin-1β) and IL-10 (interleukin-10) were significantly elevated. Pathological examinations revealed alveolar oedema and haemorrhage with multiple fat droplet depositions and fibrin thrombi. Fat droplets were also found in the arterioles and/or capillaries in the lung, kidney and brain. Immunohistochemical staining identified iNOS (inducible nitric oxide synthase) in alveolar macrophages. In conclusion, our clinical analysis suggests that PLA2, NO, free radicals and pro-inflammatory cytokines are involved in the pathogenesis of ARDS associated with FES. The major source of NO is the alveolar macrophages.

Author(s):  
Luciano Gattinon ◽  
Eleonora Carlesso

Respiratory failure (RF) is defined as the acute or chronic impairment of respiratory system function to maintain normal oxygen and CO2 values when breathing room air. ‘Oxygenation failure’ occurs when O2 partial pressure (PaO2) value is lower than the normal predicted values for age and altitude and may be due to ventilation/perfusion mismatch or low oxygen concentration in the inspired air. In contrast, ‘ventilatory failure’ primarily involves CO2 elimination, with arterial CO2 partial pressure (PaCO2) higher than 45 mmHg. The most common causes are exacerbation of chronic obstructive pulmonary disease (COPD), asthma, and neuromuscular fatigue, leading to dyspnoea, tachypnoea, tachycardia, use of accessory muscles of respiration, and altered consciousness. History and arterial blood gas analysis is the easiest way to assess the nature of acute RF and treatment should solve the baseline pathology. In severe cases mechanical ventilation is necessary as a ‘buying time’ therapy. The acute hypoxemic RF arising from widespread diffuse injury to the alveolar-capillary membrane is termed Acute Respiratory Distress Syndrome (ARDS), which is the clinical and radiographic manifestation of acute pulmonary inflammatory states.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Nicolò Sella ◽  
Tommaso Pettenuzzo ◽  
Michele Della Paolera ◽  
Giulio Andreatta ◽  
Annalisa Boscolo ◽  
...  

Veno-venous extracorporeal membrane oxygenation (V-V ECMO) may be required to treat critically ill patients with COVID-19-associated severe acute respiratory distress syndrome (ARDS). We report the case of a 43-year-old peripartum patient, who underwent two sequential V-V ECMO runs. The first extracorporeal support was established for COVID-19 ARDS, as characterized by severe hypoxemia and hypercapnia (arterial partial pressure of oxygen to inspired oxygen fraction ratio 85 mmHg and arterial partial pressure of carbon dioxide 95 mmHg) and reduction of respiratory system static compliance to 25 mL/cmH2O, unresponsive to mechanical ventilation and prone positioning. After 22 days of lung rest, V-V ECMO was successfully removed and ventilator weaning initiated. A second V-V ECMO was required 7 days later, because of newly onset ARDS due to Pseudomonas aeruginosa ventilator-associated pneumonia. The second V-V ECMO run lasted 12 days. During both V-V ECMO runs, anticoagulation and ventilator settings were titrated through bedside thromboelastometry and electrical impedance tomography, respectively, without major complications. The patient was successfully decannulated, weaned from mechanical ventilation, and finally discharged home without oxygen therapy. At one-month follow-up, she showed good general conditions and no sign of respiratory failure.


Author(s):  
Luciano Gattinon ◽  
Eleonora Carlesso

Respiratory failure (RF) is defined as the acute or chronic impairment of respiratory system function to maintain normal oxygen and CO2 values when breathing room air. ‘Oxygenation failure’ occurs when O2 partial pressure (PaO2) value is lower than the normal predicted values for age and altitude and may be due to ventilation/perfusion mismatch or low oxygen concentration in the inspired air. In contrast, ‘ventilatory failure’ primarily involves CO2 elimination, with arterial CO2 partial pressure (PaCO2) higher than 45 mmHg. The most common causes are exacerbation of chronic obstructive pulmonary disease (COPD), asthma, and neuromuscular fatigue, leading to dyspnoea, tachypnoea, tachycardia, use of accessory muscles of respiration, and altered consciousness. History and arterial blood gas analysis is the easiest way to assess the nature of acute RF and treatment should solve the baseline pathology. In severe cases mechanical ventilation is necessary as a ‘buying time’ therapy. The acute hypoxemic RF arising from widespread diffuse injury to the alveolar-capillary membrane is termed Acute Respiratory Distress Syndrome (ARDS), which is the clinical and radiographic manifestation of acute pulmonary inflammatory states.


2018 ◽  
Vol 3 (1) ◽  
pp. e000232 ◽  
Author(s):  
Karlijn J P van Wessem ◽  
Luke P H Leenen

BackgroundThe incidence of acute respiratory distress syndrome (ARDS) has decreased in the last decade by improvement in trauma and critical care. However, it still remains a major cause of morbidity and mortality. This study investigated the current incidence and mortality of ARDS in polytrauma patients.MethodsA 4.5-year prospective study included consecutive trauma patients admitted to a level 1 trauma center intensive care unit (ICU). Isolated head injuries, drowning, asphyxiation, burns, and deaths <48 hours were excluded. Demographics, Injury Severity Score (ISS), physiologic parameters, resuscitation parameters, Denver Multiple Organ Failure scores, and ARDS data according to Berlin criteria were prospectively collected. Data are presented as median (IQR), and p<0.05 was considered significant.Results241 patients were included. The median age was 45 (27–59) years, 178 (74%) were male, the ISS was 29 (22–36), and 232 (96%) patients had blunt injuries. Thirty-one patients (13%) died. Fifteen patients (6%) developed ARDS. The median time to ARDS onset was 3 (2–5) days after injury. The median duration of ARDS was 2.5 (1–3.5) days. All patients with ARDS were male compared with 61% of non-ARDS patients (p=0.003). Patients who developed ARDS had higher ISS (30 vs. 25, p=0.01), lower Partial Pressure of Oxygen in arterial blood (PaO2) both in the emergency department and ICU, and higher Partial Pressure of Carbon Dioxide in arterial blood (PaCo2) in the ICU. Patients with ARDS needed more crystalloids <24 hours (8.7 vs. 6.8 L, p=0.03), received more fresh frozen plasma <24 hours (3 vs. 0 U, p=0.04), and more platelet <8 hours and <24 hours. Further, they stayed longer on the ventilator (11 vs. 2 days, p<0.001), longer in the ICU (12 vs. 3 days, p<0.001), and in the hospital (33 vs. 15 days, p=0.004). Patients with ARDS developed more often multiple organ dysfunction syndrome (40% vs. 3%, p<0.001) and died more often (20% vs. 3%, p=0.01). Only one patient with ARDS (7%) died of ARDS.DiscussionIn this polytrauma population mortality was predominantly caused by brain injury. The incidence of ARDS was low; its presentation was only early onset, during a short time period, and accompanied by low mortality.Level of evidenceLevel III.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Chiara Robba ◽  
◽  
Lorenzo Ball ◽  
Denise Battaglini ◽  
Danilo Cardim ◽  
...  

Abstract Background In COVID-19 patients with acute respiratory distress syndrome (ARDS), the effectiveness of ventilatory rescue strategies remains uncertain, with controversial efficacy on systemic oxygenation and no data available regarding cerebral oxygenation and hemodynamics. Methods This is a prospective observational study conducted at San Martino Policlinico Hospital, Genoa, Italy. We included adult COVID-19 patients who underwent at least one of the following rescue therapies: recruitment maneuvers (RMs), prone positioning (PP), inhaled nitric oxide (iNO), and extracorporeal carbon dioxide (CO2) removal (ECCO2R). Arterial blood gas values (oxygen saturation [SpO2], partial pressure of oxygen [PaO2] and of carbon dioxide [PaCO2]) and cerebral oxygenation (rSO2) were analyzed before (T0) and after (T1) the use of any of the aforementioned rescue therapies. The primary aim was to assess the early effects of different ventilatory rescue therapies on systemic and cerebral oxygenation. The secondary aim was to evaluate the correlation between systemic and cerebral oxygenation in COVID-19 patients. Results Forty-five rescue therapies were performed in 22 patients. The median [interquartile range] age of the population was 62 [57–69] years, and 18/22 [82%] were male. After RMs, no significant changes were observed in systemic PaO2 and PaCO2 values, but cerebral oxygenation decreased significantly (52 [51–54]% vs. 49 [47–50]%, p < 0.001). After PP, a significant increase was observed in PaO2 (from 62 [56–71] to 82 [76–87] mmHg, p = 0.005) and rSO2 (from 53 [52–54]% to 60 [59–64]%, p = 0.005). The use of iNO increased PaO2 (from 65 [67–73] to 72 [67–73] mmHg, p = 0.015) and rSO2 (from 53 [51–56]% to 57 [55–59]%, p = 0.007). The use of ECCO2R decreased PaO2 (from 75 [75–79] to 64 [60–70] mmHg, p = 0.009), with reduction of rSO2 values (59 [56–65]% vs. 56 [53–62]%, p = 0.002). In the whole population, a significant relationship was found between SpO2 and rSO2 (R = 0.62, p < 0.001) and between PaO2 and rSO2 (R0 0.54, p < 0.001). Conclusions Rescue therapies exert specific pathophysiological mechanisms, resulting in different effects on systemic and cerebral oxygenation in critically ill COVID-19 patients with ARDS. Cerebral and systemic oxygenation are correlated. The choice of rescue strategy to be adopted should take into account both lung and brain needs. Registration The study protocol was approved by the ethics review board (Comitato Etico Regione Liguria, protocol n. CER Liguria: 23/2020).


2020 ◽  
Vol 21 (9) ◽  
pp. 3382
Author(s):  
Petra Kosutova ◽  
Pavol Mikolka ◽  
Sona Balentova ◽  
Marian Adamkov ◽  
Andrea Calkovska ◽  
...  

This study aimed to investigate whether a selective phosphodiesterase-3 (PDE3) inhibitor olprinone can positively influence the inflammation, apoptosis, and respiratory parameters in animals with acute respiratory distress syndrome (ARDS) model induced by repetitive saline lung lavage. Adult rabbits were divided into 3 groups: ARDS without therapy (ARDS), ARDS treated with olprinone i.v. (1 mg/kg; ARDS/PDE3), and healthy ventilated controls (Control), and were oxygen-ventilated for the following 4 h. Dynamic lung–thorax compliance (Cdyn), mean airway pressure (MAP), arterial oxygen saturation (SaO2), alveolar-arterial gradient (AAG), ratio between partial pressure of oxygen in arterial blood to a fraction of inspired oxygen (PaO2/FiO2), oxygenation index (OI), and ventilation efficiency index (VEI) were evaluated every hour. Post mortem, inflammatory and oxidative markers (interleukin (IL)-6, IL-1β, a receptor for advanced glycation end products (RAGE), IL-10, total antioxidant capacity (TAC), 3-nitrotyrosine (3NT), and malondialdehyde (MDA) and apoptosis (apoptotic index and caspase-3) were assessed in the lung tissue. Treatment with olprinone reduced the release of inflammatory mediators and markers of oxidative damage decreased apoptosis of epithelial cells and improved respiratory parameters. The results indicate a future potential of PDE3 inhibitors also in the therapy of ARDS.


2021 ◽  
Author(s):  
Yu-Chen Chen ◽  
Yi-Chih Hsu ◽  
Hsiang-Cheng Chen ◽  
CHUN-CHI LU

Abstract BackgroundGadobutrol-induced life-threatening allergies, such as acute respiratory distress syndrome (ARDS), is rarely reported. The severe allergies publishing in previous literature report involves IgE and tryptase-mediated immune responses. Gadobutrol-related non-IgE-mediated allergy has not been reported.Case presentationA 39-year-old woman underwent Gadobutrol-contrast magnetic resonance imaging of both lower limbs for clinically suspected vasculitis. One hour after injection of 8 ml Gadobutrol, the patient developed dizziness without respiratory symptoms. Eight hours after the contrast injection, she exhibited vomiting, dyspnea, and rapid progression of edema. She visited the emergency room, where chest imaging showed increased infiltration in both lungs. Arterial blood gas analysis revealed hypoxemia when she was given 100% inspired oxygen. The patient was admitted to intensive care unit and received inotropic agents. Extracorporeal membrane oxygenation was applied due to the diagnosis of ARDS and persistent hypoxia after using mechanical ventilation. Systemic intravenous glucocorticoid and antihistamine were prescribed for allergic reaction. Contrast-relevant non-IgE-mediated allergy was confirmed by detailed medical record and laboratory data. An additional 2 days of intravenous immunoglobulin was prescribed. By 3 days after admission, the patient’s shock and acute respiratory distress syndrome had responded great. She was discharged 13 days after admission.ConclusionsHere, we present the first case of gadobutrol-induced non-IgE-mediated allergy complicated by ARDS. This condition was successfully rescued by dual therapy of venovenous extracorporeal membrane oxygenation and intravenous immunoglobulin without any complications.


Sign in / Sign up

Export Citation Format

Share Document