pde3 inhibitor
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jan Beute ◽  
Pieter Boermans ◽  
Alex KleinJan

Background. The population of uncontrolled asthma patients represents a large therapeutic burden. The PDE3-inhibitor enoximone is a strong and quick bronchodilator and is known to successfully treat life-threatening bronchial asthma (status asthmaticus). Translational mice models showed anti-inflammatory effects when PDE3 was targeted. Methods. Here, we investigated the effectiveness of PDE3-inhibitor enoximone as oral treatment for chronic asthma in a real-life off-label setting. Investigational use of PDE3-inhibitor enoximone: 51 outpatients (age 18–77) with chronic asthma were followed using off-label personalized low doses of the PDE3-inhibitor enoximone. Duration of treatment was 2–8 years. Results. Four groups could be distinguished as follows: The first group includes patients who use enoximone as an add-on, because it helps them in maintaining a better general wellbeing; they still use their traditional medication (n = 5). The second group consists of patients who use enoximone and were able to phase down their traditional medication without deterioration of their asthma symptoms (n = 11). The third group comprises patients who were able to discontinue their traditional medication and use only enoximone without deterioration of their asthma symptoms (n = 24). The last one has patients who, after having used enoximone for some time, saw their symptoms disappear and now use no medication at all, not even enoximone (n = 11). All patients reported improvement or at least alleviation of their asthma symptoms. All patients reported a better quality of life and greater drug compliance. Conclusion. The evaluation shows that PDE3-inhibitor enoximone is a viable alternative for or addition to current asthma therapeutics, as both add-on and stand-alone, considerably reducing the use of LABAs/SABAs/ICS, with no or negligible side effects. Additional studies are advisable.


2021 ◽  
pp. 1-12
Author(s):  
Jan Beute ◽  
Pieter Boermans ◽  
Bart Benraad ◽  
Jan Telman ◽  
Zuzana Diamant ◽  
...  

2021 ◽  
Vol 17 ◽  
Author(s):  
Niti Sharma ◽  
Bhupesh Sharma ◽  
Neerupma Dhiman ◽  
Lalit K. Golani

Background: Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with complex aetiology and phenotypes. Maternal consumption of alcohol is known to produce deleterious effects in the progeny, generating ADHD related phenotypes. Phosphodiesterase-3 (PDE3) has been shown to provide benefits in various brain conditions. Objective: To investigate the role of a selective PDE3 inhibitor, effects of cilostazol administration on core phenotypes of prenatal alcohol exposure (PAE) model of ADHD were assessed. Methods: PAE was established by exposing animals to 6/4 g.kg-1 (weekdays/weekends) ethyl alcohol from gestational day 8-20 and cilostazol (30/60 mg.kg-1 p.o.) was administered to the offspring (PND21-48) of females exposed to ethyl alcohol. To identify probable mechanisms involved, the effects on protein markers of neuronal function such as, neuronal survival-BDNF, neuronal transcription factor-pCREB, brain inflammation (IL-6, IL-10 and TNF-α) and brain oxidative stress (TBARS and GSH) were studied in frontal cortex, cerebellum, and striatum. Also, effects on behaviour such as hyperactivity, inattention and anxiety were assessed. Result: PAE induced hyper-locomotion, inattention, and anxiety in tested animals. Administration of cilostazol to PAE group of animals resulted in amelioration of behavioural deficits. Also, cilostazol resulted in a significant increase in the levels of BDNF, pCREB, IL-10 and GSH along with significant decrease in TNF-α, IL-6 and TBARS in different brain areas of PAE group. Conclusion: Cilostazol, a selective PDE3 inhibitor rectified behavioural phenotypes associated with ADHD, possibly by altering protein markers associated with neuronal survival, neuronal transcription factor, brain inflammation, and brain oxidative stress.


Author(s):  
Bernardo Dolce ◽  
Torsten Christ ◽  
Nefeli Grammatika Pavlidou ◽  
Yalin Yildirim ◽  
Hermann Reichenspurner ◽  
...  

Abstract Atrial fibrillation (AF)–associated remodeling includes contractile dysfunction whose reasons are only partially resolved. Serotonin (5-HT) increases contractile force and causes arrhythmias in atrial trabeculae from patients in sinus rhythm (SR). In persistent atrial fibrillation (peAF), the force responses to 5-HT are blunted and arrhythmic effects are abolished. Since force but not arrhythmic responses to 5-HT in peAF could be restored by PDE3 + PDE4 inhibition, we sought to perform real-time measurements of cAMP to understand whether peAF alters PDE3 + PDE4-mediated compartmentation of 5-HT4 receptor-cAMP responses. Isolated human atrial myocytes from patients in SR, with paroxysmal AF (paAF) or peAF, were adenovirally transduced to express the FRET-based cAMP sensor Epac1-camps. Forty-eight hours later, cAMP responses to 5-HT (100 μM) were measured in the absence or concomitant presence of the PDE3 inhibitor cilostamide (0.3 μM) and the PDE4 inhibitor rolipram (1 μM). We successfully established real-time cAMP imaging in AF myocytes. 5-HT increased cAMP in SR, paAF, and peAF, but in line with previous findings on contractility, this increase was considerably smaller in peAF than in SR or paAF. The maximal cAMP response to forskolin (10 μM) was preserved in all groups. The diminished cAMP response to 5-HT in peAF was recovered by preincubation with cilostamide + rolipram. We uncovered a significantly diminished cAMP response to 5-HT4 receptor stimulation which may explain the blunted 5-HT inotropic responses observed in peAF. Since both cAMP and force responses but not arrhythmic responses were recovered after concomitant inhibition of PDE3 + PDE4, they might be regulated in different subcellular microdomains.


2020 ◽  
Vol 21 (9) ◽  
pp. 3382
Author(s):  
Petra Kosutova ◽  
Pavol Mikolka ◽  
Sona Balentova ◽  
Marian Adamkov ◽  
Andrea Calkovska ◽  
...  

This study aimed to investigate whether a selective phosphodiesterase-3 (PDE3) inhibitor olprinone can positively influence the inflammation, apoptosis, and respiratory parameters in animals with acute respiratory distress syndrome (ARDS) model induced by repetitive saline lung lavage. Adult rabbits were divided into 3 groups: ARDS without therapy (ARDS), ARDS treated with olprinone i.v. (1 mg/kg; ARDS/PDE3), and healthy ventilated controls (Control), and were oxygen-ventilated for the following 4 h. Dynamic lung–thorax compliance (Cdyn), mean airway pressure (MAP), arterial oxygen saturation (SaO2), alveolar-arterial gradient (AAG), ratio between partial pressure of oxygen in arterial blood to a fraction of inspired oxygen (PaO2/FiO2), oxygenation index (OI), and ventilation efficiency index (VEI) were evaluated every hour. Post mortem, inflammatory and oxidative markers (interleukin (IL)-6, IL-1β, a receptor for advanced glycation end products (RAGE), IL-10, total antioxidant capacity (TAC), 3-nitrotyrosine (3NT), and malondialdehyde (MDA) and apoptosis (apoptotic index and caspase-3) were assessed in the lung tissue. Treatment with olprinone reduced the release of inflammatory mediators and markers of oxidative damage decreased apoptosis of epithelial cells and improved respiratory parameters. The results indicate a future potential of PDE3 inhibitors also in the therapy of ARDS.


2018 ◽  
Vol 91 (1) ◽  
pp. 60-68 ◽  
Author(s):  
Hye-In Choi ◽  
Dong Young Kim ◽  
Soon-Jin Choi ◽  
Chang-Yup Shin ◽  
Sungjoo Tommy Hwang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document