Hydrogen sulfide attenuates the development of diabetic cardiomyopathy

2014 ◽  
Vol 128 (5) ◽  
pp. 325-335 ◽  
Author(s):  
Xiang Zhou ◽  
Guoyin An ◽  
Xiang Lu

H2S alleviates diabetic cardiomyopathy via attenuation of inflammation, oxidative stress and apoptosis. H2S may reduce high glucose-induced oxidative stress by activating the Nrf2/ARE pathway and exert anti-apoptotic effects by inhibiting JNK and p38 MAPK pathways and activating PI3K/Akt signalling.

Author(s):  
Haiyun Sun ◽  
Chong Wang ◽  
Ying Zhou ◽  
Xingbo Cheng

Objective: Diabetic cardiomyopathy (DCM) is an important complication of diabetes. This study was attempted to discover the effects of long noncoding RNA OIP5-AS1 (OIP5-AS1) on the viability and oxidative stress of cardiomyocyte in DCM. Methods: The expression of OIP5-AS1 and microRNA-34a (miR-34a) in DCM was detected by qRT-PCR. In vitro, DCM was simulated by high glucose (HG, 30 mM) treatment in H9c2 cells. The viability of HG (30 mM)-treated H9c2 cells was examined by MTT assay. The reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) levels were used to evaluate the oxidative stress of HG (30 mM)-treated H9c2 cells. Dual-luciferase reporter assay was used to confirm the interactions among OIP5-AS1, miR-34a and SIRT1. Western blot was applied to analyze the protein expression of SIRT1. Results: The expression of OIP5-AS1 was down-regulated in DCM, but miR-34a was up-regulated. The functional experiment stated that OIP5-AS1 overexpression increased the viability and SOD level, while decreased the ROS and MDA levels in HG (30 mM)-treated H9c2 cells. The mechanical experiment confirmed that OIP5-AS1 and SIRT1 were both targeted by miR-34a with the complementary binding sites at 3′UTR. MiR-34a overexpression inhibited the protein expression of SIRT1. In the feedback experiments, miR-34a overexpression or SIRT1 inhibition weakened the promoting effect on viability, and mitigated the reduction effect on oxidative stress caused by OIP5-AS1 overexpression in HG (30 mM)-treated H9c2 cells. Conclusions: OIP5-AS1 overexpression enhanced viability and attenuated oxidative stress of cardiomyocyte via regulating miR-34a/SIRT1 axis in DCM, providing a new therapeutic target for DCM.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Kaifeng Li ◽  
Mengen Zhai ◽  
Liqing Jiang ◽  
Fan Song ◽  
Bin Zhang ◽  
...  

Hyperglycemia-induced oxidative stress and fibrosis play a crucial role in the development of diabetic cardiomyopathy (DCM). Tetrahydrocurcumin (THC), a major bioactive metabolite of natural antioxidant curcumin, is reported to exert even more effective antioxidative and superior antifibrotic properties as well as anti-inflammatory and antidiabetic abilities. This study was designed to investigate the potential protective effects of THC on experimental DCM and its underlying mechanisms, pointing to the role of high glucose-induced oxidative stress and interrelated fibrosis. In STZ-induced diabetic mice, oral administration of THC (120 mg/kg/d) for 12 weeks significantly improved the cardiac function and ameliorated myocardial fibrosis and cardiac hypertrophy, accompanied by reduced reactive oxygen species (ROS) generation. Mechanically, THC administration remarkably increased the expression of the SIRT1 signaling pathway both in vitro and in vivo, further evidenced by decreased downstream molecule Ac-SOD2 and enhanced deacetylated production SOD2, which finally strengthened antioxidative stress capacity proven by repaired activities of SOD and GSH-Px and reduced MDA production. Additionally, THC treatment accomplished its antifibrotic effect by depressing the ROS-induced TGFβ1/Smad3 signaling pathway followed by reduced expression of cardiac fibrotic markers α-SMA, collagen I, and collagen III. Collectively, these finds demonstrated the therapeutic potential of THC treatment to alleviate DCM mainly by attenuating hyperglycemia-induced oxidative stress and fibrosis via activating the SIRT1 pathway.


2019 ◽  
Vol 39 (1) ◽  
pp. 77-85 ◽  
Author(s):  
AA Fouad ◽  
HM Hafez ◽  
AAH Hamouda

Methotrexate (MTX) is a commonly used anticancer and immunosuppressive agent. However, MTX can induce hepatotoxicity due to oxidative stress, inflammation, and apoptosis. Hydrogen sulfide (H2S), the endogenous gaseous molecule, has antioxidant, anti-inflammatory, and anti-apoptotic effects. The present work explored the probable protective effect of H2S against MTX hepatotoxicity in rats and also the possible mechanisms underlying this effect. MTX was given at a single intraperitoneal (i.p.) dose of 20 mg/kg. Sodium H2S (56 µmol /kg/day, i.p.), as H2S donor, was given for 10 days, starting 6 days before MTX administration. H2S significantly reduced serum alanine aminotransferase, hepatic malondialdehyde, interleukin 6, nuclear factor κB p65, cytosolic cytochrome c, phosphorylated signal transducer and activator of transcription 3, and Bax/Bcl-2 ratio and significantly increased hepatic total antioxidant capacity and endothelial nitric oxide synthase (eNOS) in rats received MTX. In addition, H2S minimized the histopathological injury and significantly decreased the expression of STAT3 in liver tissue of MTX-challenged rats. The effects of H2S were significantly antagonized by administration of glibenclamide as KATP channel blocker, Nω-nitro-l-arginine, as eNOS inhibitor, or ruthenium red, as transient receptor potential vanilloid 1 (TRPV1) antagonist. It was concluded that H2S provided significant hepatoprotection in MTX-challenged rats through its antioxidant, anti-inflammatory, anti-apoptotic effects. These effects are most probably mediated by the ability of H2S to act as IL-6/STAT3 pathway modulator, KATP channel opener, eNOS activator, and TRPV1 agonist.


2014 ◽  
Vol 64 (16) ◽  
pp. C30
Author(s):  
Song Zhiming ◽  
Ma Xiaoju ◽  
Liu Yong ◽  
Hao Baoshun ◽  
Yu Shujie ◽  
...  

2009 ◽  
Vol 15 (6) ◽  
pp. S39
Author(s):  
Kim A. Connelly ◽  
Andrew Advani ◽  
Kerri Thai ◽  
Darren J. Kelly ◽  
Richard E. Gilbert

2019 ◽  
Author(s):  
Shanshan Du ◽  
Jingzhi Shao ◽  
Dandan Xie ◽  
Fengyan Zhang

AbstractPurposeTo determine the effect of decorin on oxidative stress and apoptosis of human lens epithelial (HLE) cells under high glucose condition.MethodsHLE cell line (HLEB3) was incubated in normal glucose (5.5 mM) or high glucose (60 mM) medium. Decorin (50 nM) was applied 2 hours before high glucose medium was added. Apoptosis detection was executed by flow cytometry and western blotting (analysis of bcl-2 and bax). Oxidative stress level was measured by the generation of reactive oxygen species (ROS), glutathione peroxidase (GSH) and superoxide dismutase (SOD). P38 mitogen-activated protein kinase (MAPK) phosphorylation, the expression of p22phox of HLE cells and human lens anterior capsules were detected by western blotting. Small interfering RNA transfection to p22phox and p38 MAPK was also carried out on HLEB3.ResultsHigh glucose caused HLE cells oxidative stress and apoptosis exhibiting the increase of apoptotic cells and ROS production and decrease of bcl-2/bax ratio, GSH/GSSG ration and SOD activity. P22phox and phospho-p38 MAPK were upregulated in high glucose treated HLEB3 cells. Knocking down p22phox or p38 by siRNAs can reduce high glucose induced cell apoptosis and oxidative stress level. Silencing p22phox by siRNA can downregulate p38 MAPK activation. Decorin can inhibit the apoptosis, oxidative stress level and the induction of p22phox and p-p38 of HLEB3 induced by high glucose. Furthermore, the expression of p22phox and p38 were found significantly increased in lens anterior capsules of diabetic cataract patients compared to that of normal age-related cataract patients.ConclusionsResults showed that p22phox-p38 pathway may be particepated in high glucose induced lens epithelial cell injury, decorin may inhibit the high glucose induced apoptosis and oxidative stress injury by suppressing this pathway in part.


2019 ◽  
Vol 20 (10) ◽  
pp. 2427 ◽  
Author(s):  
Maayan Waldman ◽  
Vadim Nudelman ◽  
Asher Shainberg ◽  
Romy Zemel ◽  
Ran Kornwoski ◽  
...  

Type 2 diabetes mellitus (DM2) leads to cardiomyopathy characterized by cardiomyocyte hypertrophy, followed by mitochondrial dysfunction and interstitial fibrosis, all of which are exacerbated by angiotensin II (AT). SIRT1 and its transcriptional coactivator target PGC-1α (peroxisome proliferator-activated receptor-γ coactivator), and heme oxygenase-1 (HO-1) modulates mitochondrial biogenesis and antioxidant protection. We have previously shown the beneficial effect of caloric restriction (CR) on diabetic cardiomyopathy through intracellular signaling pathways involving the SIRT1–PGC-1α axis. In the current study, we examined the role of HO-1 in diabetic cardiomyopathy in mice subjected to CR. Methods: Cardiomyopathy was induced in obese diabetic (db/db) mice by AT infusion. Mice were either fed ad libitum or subjected to CR. In an in vitro study, the reactive oxygen species (ROS) level was determined in cardiomyocytes exposed to different glucose levels (7.5–33 mM). We examined the effects of Sn(tin)-mesoporphyrin (SnMP), which is an inhibitor of HO activity, the HO-1 inducer cobalt protoporphyrin (CoPP), and the SIRT1 inhibitor (EX-527) on diabetic cardiomyopathy. Results: Diabetic mice had low levels of HO-1 and elevated levels of the oxidative marker malondialdehyde (MDA). CR attenuated left ventricular hypertrophy (LVH), increased HO-1 levels, and decreased MDA levels. SnMP abolished the protective effects of CR and caused pronounced LVH and cardiac metabolic dysfunction represented by suppressed levels of adiponectin, SIRT1, PPARγ, PGC-1α, and increased MDA. High glucose (33 mM) increased ROS in cultured cardiomyocytes, while SnMP reduced SIRT1, PGC-1α levels, and HO activity. Similarly, SIRT1 inhibition led to a reduction in PGC-1α and HO-1 levels. CoPP increased HO-1 protein levels and activity, SIRT1, and PGC-1α levels, and decreased ROS production, suggesting a positive feedback between SIRT1 and HO-1. Conclusion: These results establish a link between SIRT1, PGC-1α, and HO-1 signaling that leads to the attenuation of ROS production and diabetic cardiomyopathy. CoPP mimicked the beneficial effect of CR, while SnMP increased oxidative stress, aggravating cardiac hypertrophy. The data suggest that increasing HO-1 levels constitutes a novel therapeutic approach to protect the diabetic heart. Brief Summary: CR attenuates cardiomyopathy, and increases HO-1, SIRT activity, and PGC-1α protein levels in diabetic mice. High glucose reduces adiponectin, SIRT1, PGC1-1α, and HO-1 levels in cardiomyocytes, resulting in oxidative stress. The pharmacological activation of HO-1 activity mimics the effect of CR, while SnMP increased oxidative stress and cardiac hypertrophy. These data suggest the critical role of HO-1 in protecting the diabetic heart.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Li Deng ◽  
Xuxin Chen ◽  
Yi Zhong ◽  
Xing Wen ◽  
Ying Cai ◽  
...  

High glucose- (HG-) induced cardiomyocyte injury is the leading cause of diabetic cardiomyopathy, which is associated with the induction of inflammatory responses and oxidative stress. TGR5 plays an important role in the regulation of glucose metabolism. However, whether TGR5 has cardioprotective effects against HG-induced cardiomyocyte injury is unknown. Neonatal mouse cardiomyocytes were isolated and incubated in a HG medium. Protein and mRNA expression was detected by western blotting and RT-PCR, respectively. Cell apoptosis was determined by Hoechst 33342 staining and flow cytometry. After treatment of cells with HG, TGR5-selective agonist INT-777 reduced the increase in expression of proinflammatory cytokines and NF-κB, whereas pretreatment of cells with TGR5 shRNA significantly reduced the inhibitory effects of INT-777. We also found that INT-777 increased the protein expression of Nrf2 and HO-1. In the presence of TGR5 shRNA, the expression of Nrf2 and HO-1 was reduced, indicating that TGR5 may exert an antioxidant effect partially through the Nrf2/HO-1 pathway. Furthermore, INT-777 treatment inhibited HG-induced ROS production and apoptosis that were attenuated in the presence of TGR5 shRNA or ZnPP (HO-1 inhibitor). Activation of TGR5 has cardioprotective effects against HG-induced cardiomyocyte injury and could be a pharmacological target for the treatment of diabetic cardiomyopathy.


Sign in / Sign up

Export Citation Format

Share Document