scholarly journals Long noncoding RNA Hotair facilitates retinal endothelial cell dysfunction in diabetic retinopathy

2020 ◽  
Vol 134 (17) ◽  
pp. 2419-2434
Author(s):  
Di Zhao ◽  
Yanyan Zhao ◽  
Jiao Wang ◽  
Lina Wu ◽  
Yanling Liu ◽  
...  

Abstract Background: Retinal endothelial cell (REC) dysfunction induced by diabetes mellitus (DM) is an important pathological step of diabetic retinopathy (DR). Long noncoding RNAs (lncRNAs) have emerged as novel modulators in DR. The present study aimed to investigate the role and mechanism of lncRNA Hotair in regulating DM-induced REC dysfunction. Methods: The retinal vascular preparations and immunohistochemical staining assays were conducted to assess the role of Hotair in retinal vessel impairment in vivo. The EdU, transwell, cell permeability, CHIP, luciferase activity, RIP, RNA pull-down, and Co-IP assays were employed to investigate the underlying mechanism of Hotair-mediated REC dysfunction in vitro. Results: Hotair expression was significantly increased in diabetic retinas and high glucose (HG)-stimulated REC. Hotair knockdown inhibited the proliferation, invasion, migration, and permeability of HG-stimulated REC in vitro and reduced the retinal acellular capillaries and vascular leakage in vivo. Mechanistically, Hotair bound to LSD1 to inhibit VE-cadherin transcription by reducing the H3K4me3 level on its promoter and to facilitate transcription factor HIF1α-mediated transcriptional activation of VEGFA. Furthermore, LSD1 mediated the effects of Hotair on REC function under HG condition. Conclusion: The Hotair exerts its role in DR by binding to LSD1, decreasing VE-cadherin transcription, and increasing VEGFA transcription, leading to REC dysfunction. These findings revealed that Hotair is a potential therapeutic target of DR.

Oncogene ◽  
2021 ◽  
Author(s):  
Pengpeng Zhu ◽  
Fang He ◽  
Yixuan Hou ◽  
Gang Tu ◽  
Qiao Li ◽  
...  

AbstractThe hostile hypoxic microenvironment takes primary responsibility for the rapid expansion of breast cancer tumors. However, the underlying mechanism is not fully understood. Here, using RNA sequencing (RNA-seq) analysis, we identified a hypoxia-induced long noncoding RNA (lncRNA) KB-1980E6.3, which is aberrantly upregulated in clinical breast cancer tissues and closely correlated with poor prognosis of breast cancer patients. The enhanced lncRNA KB-1980E6.3 facilitates breast cancer stem cells (BCSCs) self-renewal and tumorigenesis under hypoxic microenvironment both in vitro and in vivo. Mechanistically, lncRNA KB-1980E6.3 recruited insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) to form a lncRNA KB-1980E6.3/IGF2BP1/c-Myc signaling axis that retained the stability of c-Myc mRNA through increasing binding of IGF2BP1 with m6A-modified c-Myc coding region instability determinant (CRD) mRNA. In conclusion, we confirm that lncRNA KB-1980E6.3 maintains the stemness of BCSCs through lncRNA KB-1980E6.3/IGF2BP1/c-Myc axis and suggest that disrupting this axis might provide a new therapeutic target for refractory hypoxic tumors.


2021 ◽  
Author(s):  
Feng-Juan Zhou ◽  
Sen Meng ◽  
Hongmei Yong ◽  
Ping-Fu Hou ◽  
Min-Le Li ◽  
...  

Abstract Renal cell carcinoma (RCC) is one of the most prevalent cancers. Long noncoding RNAs (LncRNAs) have been indicated as a mediator acted in tumorigenesis of RCC. However, the mechanism of LINC00460 on RCC is yet to be investigated. This study aimed to investigate the potential function of LINC00460 and underlying mechanism of RCC. We detected LINC00460 expression in RCC tissues and the prognosis in RCC patients using Gene Expression Profiling Interactive Analysis (GEPIA) website and The Cancer Genome Atlas (TCGA) database. LINC00460 level in normal renal cell line and RCC cell lines were detected by quantitative real-time polymerase chain reaction (qRT-PCR). We study the effects of LINC00460 on proliferation, migration, invasion, apoptosis in RCC cells lines using a series of in vivo and in vitro experiments. RNA sequencing (RNA-seq) analysis for the whole transcriptome was applied to searching potential LINC00460 related signal pathway in RCC. We identified the significant up-regulated expression level of LINC00460 in RCC tissues and cell lines. Elevated LINC00460 was correlated with shorter survival of RCC patients. Overexpression of LINC00460 promoted cell viability, proliferation, invasion and migration, while down-regulation of LINC00460 exerted inhibitory effect on these activities. We crucially identified that LNC00460 promotes development of RCC by influencing the PI3K/AKT pathway. Knockdown of LNC00460 decreased the phosphorylation of AKT and mTOR. The key finding of our study provided a new evidence suggesting that LINC00460 functions as an oncogene in RCC pathogenesis by mediating the PI3K/AKT pathway, which may provide a new target for the treatment of RCC.


Author(s):  
Lansheng Zhang ◽  
Xia Zheng ◽  
Anqi Shen ◽  
Daojin Hua ◽  
Panrong Zhu ◽  
...  

Chemoresistance remains a major obstacle for improving the clinical outcome of patients with breast cancer. Recently, long noncoding RNAs (lncRNAs) have been implicated in breast cancer chemoresistance. However, the function and underlying mechanism are still largely unknown. Using lncRNA microarray, we identified 122 upregulated and 475 downregulated lncRNAs that might be related to the breast cancer chemoresistance. Among them, RP11-70C1.3 was one of the most highly expressed lncRNAs. In breast cancer patients, high RP11-70C1.3 expression predicted poor prognosis. Knockdown of RP11-70C1.3 inhibited the multidrug resistance of breast cancer cells in vitro and in vivo. Further investigations revealed that RP11-70C1.3 functioned as a competing endogenous RNA (ceRNA) for miR-6736-3p to increase NRP-1 expression. Notably, the rescue experiments showed that both miR-6736-3p inhibitor and NRP-1 overexpression could partly reverse the suppressive influence of RP11-70C1.3 knockdown on breast cancer chemoresistance. In conclusion, our study indicated that lncRNA RP11-70C1.3 regulated NRP-1 expression by sponging miR-6736-3p to confer chemoresistance of breast cancer cells. RP11-70C1.3 might be a potential therapeutic target in enhancing the clinical efficacy of chemotherapy in breast cancer.


2016 ◽  
Vol 39 (5) ◽  
pp. 2044-2054 ◽  
Author(s):  
Ban Liu ◽  
Chao-Peng Li ◽  
Wen-Qi Wang ◽  
Shu-Guang Song ◽  
Xiu-Ming Liu

Background/Aims: Advanced glycation end products (AGEs) could elicit oxidative stress, trigger and aggravate endothelium damage in several ischemic retinopathies including diabetic retinopathy (DR). The leaves of Eucommia ulmoides O., also referred to as Tu-chung or Du-zhong, have been used for the treatment of hypertension and diabetes, showing great antioxidant activity and anti-glycation activity. Lignans is one of the main bioactive components of Eucommia ulmoides. This study mainly investigated the effect of lignans treatment on AGEs-induced endothelium damage. Methods: MTT assay, Hoechst staining, and calcein-AM/ propidium iodide (PI) staining was conducted to determine the effect of lignans treatment on endothelial cell function in vitro. Retinal trypsin digestion, Evans blue assay, isolectin staining, and western blots were conducted to determine the effect of lignans treatment on retinal microvascular function in vivo. Western blot, protein immunoprecipitation (IP), MTT assays, and enzyme activity assay was conducted to detect the effect of ligans treatment on oxidative stress response. Results: Lignans protected retinal endothelial cell against AGEs-induced injury in vitro and diabetes-induced vascular dysfunction in vivo. Lignans treatment could regulate oxidative stress response in retinal endothelial cell line, retina, and liver. Moreover, we showed that NRF2/HO-1 signaling was critical for lignans-mediated oxidative stress regulation. Conclusion: Lignans treatment could protect against endothelial dysfunction in vivo and in vitro via regulating Nrf2/HO-1 signaling. Lignans might be developed as a promising drug for the treatment of diabetes-induced microvascular dysfunction.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Huan-yu Zhang ◽  
Mao-qing Xing ◽  
Jing Guo ◽  
Jin-chuan Zhao ◽  
Xin Chen ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) play essential roles in tumor progression. However, the functions and targets of lncRNAs in neuroblastoma (NB) progression still remain to be determined. In this study, we aimed to investigate the effect of lncRNA DLX6 antisense RNA 1 (DLX6-AS1) on NB and the underlying mechanism involved. Methods Through mining of public microarray datasets, we identify aberrantly expressed lncRNAs in NB. The gene expression levels were determined by quantitative real-time PCR, and protein expression levels were determined by western blot assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation assay, wound-healing assay, transwell invasion assays and flow cytometry analysis were utilized to examine cell proliferation, migration, invasion and apoptosis. Luciferase reporter assay was performed to confirm the interaction between DLX6-AS1and its potential targets. Tumor xenograft assay was used to verify the role of DLX6-AS1 in NB in vivo. Results We identified DLX6-AS1 was upregulated in NB by using a public microarray dataset. The expression of DLX6-AS1 was increased in NB tissues and derived cell lines, and high expression of DLX6-AS1 was positively correlated with advanced TNM stage and poor differentiation. Knockdown of DLX6-AS1 induced neuronal differentiation, apoptosis and inhibited the growth, invasion, and metastasis of NB cells in vitro and impaired tumor growth in vivo. MiR-107 was the downstream target of DLX6-AS1. MiR-107 was found to target brain‐derived neurotrophic factor (BDNF) which is an oncogene in NB. Knockdown of miR-107 or overexpression of BDNF reversed the suppression of NB progression caused by DLX6-AS1 silence. Conclusion Overall, our finding supports that DLX6-AS1 promotes NB progression by regulating miR-107/BDNF pathway, acting as a novel therapeutic target for NB.


2008 ◽  
Vol 295 (6) ◽  
pp. C1647-C1657 ◽  
Author(s):  
Qiong Huang ◽  
Nader Sheibani

Hyperglycemia impacts retinal vascular function and promotes the development and progression of diabetic retinopathy, which ultimately results in growth of new blood vessels and loss of vision. How high glucose affects retinal endothelial cell (EC) properties requires further investigation. Here we determined the impact of high glucose on mouse retinal EC function in vitro. High glucose significantly enhanced the migration of retinal EC without impacting their proliferation, apoptosis, adhesion, and capillary morphogenesis. The enhanced migration of retinal EC under high glucose was reversed in the presence of the antioxidant N-acetylcysteine, suggesting increased oxidative stress under high-glucose conditions. Retinal EC under high-glucose conditions also expressed increased levels of fibronectin, osteopontin, and αvβ3-integrin, and reduced levels of thrombospondin-1. These changes were concomitant with sustained activation of the downstream prosurvival and promigratory signaling pathways, including Src kinase, phosphatidylinositol 3-kinase/Akt1/endothelial nitric oxide synthase, and ERKs. The sustained activation of these signaling pathways was essential for enhanced migration of retinal EC under high-glucose conditions. Together, our results indicate the exposure of retinal EC to high glucose promotes a promigratory phenotype. Thus alterations in the proangiogenic properties of retinal EC during diabetes may contribute to the development and pathogenesis of diabetic retinopathy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chuan-jian Shi ◽  
Yan-biao Zheng ◽  
Fei-fei Pan ◽  
Feng-wei Zhang ◽  
Peng Zhuang ◽  
...  

Gallic acid (3,4,5-trihydroxybenzoic acid; GA), a natural phenolic acid, is abundantly found in numerous natural products. Increasing evidence have demonstrated that GA plays anti-cancer roles in multiple cancers. However, its anti-tumor effects on hepatocellular carcinoma (HCC) and the underlying mechanism remain obscure. In the present study, we found that GA suppressed the in vitro cell viability and metastasis and inhibited the in vivo tumor growth of HCC cells. The underlying mechanism was further to investigate and it was showed that GA suppressed the expression of β-catenin and led to the functional inactivation of Wnt/β-catenin signaling. As a kind of significant regulators, the long noncoding RNA molecules (lncRNAs) have attracted widespread attentions for their critical roles in diverse biological process and human diseases. To further identify which lncRNA participated this GA-mediated process, several lncRNAs related to Wnt/β-catenin signaling were chosen for examination of their expression profiling in the GA-treated HCC cells. Of which, Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) was the most promising candidate. And moreover, MALAT1 was significantly down-regulated by GA. Its overexpression partially reversed the GA-induced the inhibitory effects on cell proliferation and metastasis; and successfully abolished the suppressive effect of GA on Wnt/β-catenin signaling. In conclusion, our results indicated that GA suppressed tumorigenesis in vitro and in vivo by the MALAT1-Wnt/β-catenin signaling axis, suggesting that GA has great potential to be developed as a chemo-prevention and chemotherapy agent for HCC patients.


Author(s):  
Sumegha Mitra ◽  
Yulia Epshtein ◽  
Saad Sammani ◽  
Hector Quijada ◽  
Weiguo Chen ◽  
...  

Increasing evidence suggests an important role for deubiquitinating enzymes (DUBs) in modulating a variety of biological functions and diseases. We previously identified the upregulation of the DUB, ubiquitin carboxyl terminal hydrolase 1 (UCHL1) in murine ventilator-induced lung injury (VILI). However, the role of UCHL1 in modulating vascular permeability, a cardinal feature of acute lung injury (ALI) in general, remains unclear. We investigated the role of UCHL1 in pulmonary endothelial cell (EC) barrier function in vitro and in vivo and examined effects of UCHL1 on VE-cadherin and claudin-5 regulation, important adherens and tight junctional components, respectively. Measurements of transendothelial electrical resistance (TER) confirmed decreased barrier enhancement induced by hepatocyte growth factor (HGF) and increased thrombin-induced permeability in both UCHL1-silenced EC and in EC pretreated with LDN-57444 (LDN), a pharmacologic UCHL1 inhibitor. Additionally, UCHL1 knockdown (siRNA) was associated with decreased expression of VE-cadherin and claudin-5 while silencing of the transcription factor, FoxO1 restored claudin-5 levels. Finally, UCHL1 inhibition in vivo via LDN was associated with increased VILI in a murine model. These findings support a prominent functional role of UCHL1 in regulating lung vascular permeability via alterations in adherens and tight junctions and implicate UCHL1 as an important mediator of ALI.


Sign in / Sign up

Export Citation Format

Share Document