scholarly journals Current perspectives in fragment-based lead discovery (FBLD)

2017 ◽  
Vol 61 (5) ◽  
pp. 453-464 ◽  
Author(s):  
Bas Lamoree ◽  
Roderick E. Hubbard

It is over 20 years since the first fragment-based discovery projects were disclosed. The methods are now mature for most ‘conventional’ targets in drug discovery such as enzymes (kinases and proteases) but there has also been growing success on more challenging targets, such as disruption of protein–protein interactions. The main application is to identify tractable chemical startpoints that non-covalently modulate the activity of a biological molecule. In this essay, we overview current practice in the methods and discuss how they have had an impact in lead discovery – generating a large number of fragment-derived compounds that are in clinical trials and two medicines treating patients. In addition, we discuss some of the more recent applications of the methods in chemical biology – providing chemical tools to investigate biological molecules, mechanisms and systems.

Author(s):  
Haiying Lu ◽  
Qiaodan Zhou ◽  
Jun He ◽  
Zhongliang Jiang ◽  
Cheng Peng ◽  
...  

Abstract Protein–protein interactions (PPIs) have pivotal roles in life processes. The studies showed that aberrant PPIs are associated with various diseases, including cancer, infectious diseases, and neurodegenerative diseases. Therefore, targeting PPIs is a direction in treating diseases and an essential strategy for the development of new drugs. In the past few decades, the modulation of PPIs has been recognized as one of the most challenging drug discovery tasks. In recent years, some PPIs modulators have entered clinical studies, some of which been approved for marketing, indicating that the modulators targeting PPIs have broad prospects. Here, we summarize the recent advances in PPIs modulators, including small molecules, peptides, and antibodies, hoping to provide some guidance to the design of novel drugs targeting PPIs in the future.


2019 ◽  
Vol 26 (21) ◽  
pp. 3890-3910 ◽  
Author(s):  
Branislava Gemovic ◽  
Neven Sumonja ◽  
Radoslav Davidovic ◽  
Vladimir Perovic ◽  
Nevena Veljkovic

Background: The significant number of protein-protein interactions (PPIs) discovered by harnessing concomitant advances in the fields of sequencing, crystallography, spectrometry and two-hybrid screening suggests astonishing prospects for remodelling drug discovery. The PPI space which includes up to 650 000 entities is a remarkable reservoir of potential therapeutic targets for every human disease. In order to allow modern drug discovery programs to leverage this, we should be able to discern complete PPI maps associated with a specific disorder and corresponding normal physiology. Objective: Here, we will review community available computational programs for predicting PPIs and web-based resources for storing experimentally annotated interactions. Methods: We compared the capacities of prediction tools: iLoops, Struck2Net, HOMCOS, COTH, PrePPI, InterPreTS and PRISM to predict recently discovered protein interactions. Results: We described sequence-based and structure-based PPI prediction tools and addressed their peculiarities. Additionally, since the usefulness of prediction algorithms critically depends on the quality and quantity of the experimental data they are built on; we extensively discussed community resources for protein interactions. We focused on the active and recently updated primary and secondary PPI databases, repositories specialized to the subject or species, as well as databases that include both experimental and predicted PPIs. Conclusion: PPI complexes are the basis of important physiological processes and therefore, possible targets for cell-penetrating ligands. Reliable computational PPI predictions can speed up new target discoveries through prioritization of therapeutically relevant protein–protein complexes for experimental studies.


2020 ◽  
Vol 27 (37) ◽  
pp. 6306-6355 ◽  
Author(s):  
Marian Vincenzi ◽  
Flavia Anna Mercurio ◽  
Marilisa Leone

Background:: Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as protein interaction domains (PIDs). Objective:: This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field. Method:: Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns was retrieved through Pubmed and analyzed. Results and Conclusion:: PIDs are rather versatile as concerning their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.


2020 ◽  
Vol 20 (10) ◽  
pp. 855-882
Author(s):  
Olivia Slater ◽  
Bethany Miller ◽  
Maria Kontoyianni

Drug discovery has focused on the paradigm “one drug, one target” for a long time. However, small molecules can act at multiple macromolecular targets, which serves as the basis for drug repurposing. In an effort to expand the target space, and given advances in X-ray crystallography, protein-protein interactions have become an emerging focus area of drug discovery enterprises. Proteins interact with other biomolecules and it is this intricate network of interactions that determines the behavior of the system and its biological processes. In this review, we briefly discuss networks in disease, followed by computational methods for protein-protein complex prediction. Computational methodologies and techniques employed towards objectives such as protein-protein docking, protein-protein interactions, and interface predictions are described extensively. Docking aims at producing a complex between proteins, while interface predictions identify a subset of residues on one protein that could interact with a partner, and protein-protein interaction sites address whether two proteins interact. In addition, approaches to predict hot spots and binding sites are presented along with a representative example of our internal project on the chemokine CXC receptor 3 B-isoform and predictive modeling with IP10 and PF4.


2018 ◽  
Vol 14 ◽  
pp. 2881-2896 ◽  
Author(s):  
Laura Carro

Antibiotics are potent pharmacological weapons against bacterial infections; however, the growing antibiotic resistance of microorganisms is compromising the efficacy of the currently available pharmacotherapies. Even though antimicrobial resistance is not a new problem, antibiotic development has failed to match the growth of resistant pathogens and hence, it is highly critical to discover new anti-infective drugs with novel mechanisms of action which will help reducing the burden of multidrug-resistant microorganisms. Protein–protein interactions (PPIs) are involved in a myriad of vital cellular processes and have become an attractive target to treat diseases. Therefore, targeting PPI networks in bacteria may offer a new and unconventional point of intervention to develop novel anti-infective drugs which can combat the ever-increasing rate of multidrug-resistant bacteria. This review describes the progress achieved towards the discovery of molecules that disrupt PPI systems in bacteria for which inhibitors have been identified and whose targets could represent an alternative lead discovery strategy to obtain new anti-infective molecules.


2012 ◽  
Vol 443 (3) ◽  
pp. 627-634 ◽  
Author(s):  
Xin Lin ◽  
Xin Li ◽  
Ming Jiang ◽  
Linhai Chen ◽  
Chanjuan Xu ◽  
...  

Many GPCRs (G-protein-coupled receptors) can activate RTKs (receptor tyrosine kinases) in the absence of RTK ligands, a phenomenon called transactivation. However, the underlying molecular mechanisms remain undefined. In the present study we investigate the molecular basis of GABAB (γ-aminobutyric acid B) receptor-mediated transactivation of IGF-1R (insulin-like growth factor type I receptor) in primary neurons. We take a chemical biology approach by developing an activity-based probe targeting the GABAB receptor. This probe enables us first to lock the GABAB receptor in an inactive state and then activate it with a positive allosteric modulator, thereby permitting monitoring of the dynamic of the protein complex associated with IGF-1R transactivation. We find that activation of the GABAB receptor induces a dynamic assembly and disassembly of a protein complex, including both receptors and their downstream effectors. FAK (focal adhesion kinase), a non-RTK, plays a key role in co-ordinating this dynamic process. Importantly, this dynamic of the GABAB receptor-associated complex is critical for transactivation and transactivation-dependent neuronal survival. The present study has identified an important mechanism underlying GPCR transactivation of RTKs, which was enabled by a new chemical biology tool generally applicable for dissecting GPCR signalling.


2010 ◽  
Vol 17 (29) ◽  
pp. 3393-3409 ◽  
Author(s):  
Peng Zhan ◽  
Wenjun Li ◽  
Hongfei Chen ◽  
Xinyong Liu

Sign in / Sign up

Export Citation Format

Share Document