An Examination of the Degrees of Freedom of Human Jaw Motion in Speech and Mastication

1997 ◽  
Vol 40 (6) ◽  
pp. 1341-1351 ◽  
Author(s):  
David J. Ostry ◽  
Eric Vatikiotis-Bateson ◽  
Paul L. Gribble

The kinematics of human jaw movements were assessed in terms of the three orientation angles and three positions that characterize the motion of the jaw as a rigid body. The analysis focused on the identification of the jaw’s independent movement dimensions, and was based on an examination of jaw motion paths that were plotted in various combinations of linear and angular coordinate frames. Overall, both behaviors were characterized by independent motion in four degrees of freedom. In general, when jaw movements were plotted to show orientation in the sagittal plane as a function of horizontal position, relatively straight paths were observed. In speech, the slopes and intercepts of these paths varied depending on the phonetic material. The vertical position of the jaw was observed to shift up or down so as to displace the overall form of the sagittal plane motion path of the jaw. Yaw movements were small but independent of pitch, and vertical and horizontal position. In mastication, the slope and intercept of the relationship between pitch and horizontal position were affected by the type of food and its size. However, the range of variation was less than that observed in speech. When vertical jaw position was plotted as a function of horizontal position, the basic form of the path of the jaw was maintained but could be shifted vertically. In general, larger bolus diameters were associated with lower jaw positions throughout the movement. The timing of pitch and yaw motion differed. The most common pattern involved changes in pitch angle during jaw opening followed by a phase predominated by lateral motion (yaw). Thus, in both behaviors there was evidence of independent motion in pitch, yaw, horizontal position, and vertical position. This is consistent with the idea that motions in these degrees of freedom are independently controlled.

2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Alexander Agboola-Dobson ◽  
Guowu Wei ◽  
Lei Ren

Recent advancements in powered lower limb prostheses have appeased several difficulties faced by lower limb amputees by using a series-elastic actuator (SEA) to provide powered sagittal plane flexion. Unfortunately, these devices are currently unable to provide both powered sagittal plane flexion and two degrees of freedom (2-DOF) at the ankle, removing the ankle’s capacity to invert/evert, thus severely limiting terrain adaption capabilities and user comfort. The developed 2-DOF ankle system in this paper allows both powered flexion in the sagittal plane and passive rotation in the frontal plane; an SEA emulates the biomechanics of the gastrocnemius and Achilles tendon for flexion while a novel universal-joint system provides the 2-DOF. Several studies were undertaken to thoroughly characterize the capabilities of the device. Under both level- and sloped-ground conditions, ankle torque and kinematic data were obtained by using force-plates and a motion capture system. The device was found to be fully capable of providing powered sagittal plane motion and torque very close to that of a biological ankle while simultaneously being able to adapt to sloped terrain by undergoing frontal plane motion, thus providing 2-DOF at the ankle. These findings demonstrate that the device presented in this paper poses radical improvements to powered prosthetic ankle-foot device (PAFD) design.


1994 ◽  
Vol 71 (4) ◽  
pp. 1528-1545 ◽  
Author(s):  
D. J. Ostry ◽  
K. G. Munhall

1. The kinematics of sagittal-plane jaw motion were assessed in mastication and speech. The movement paths were described in joint coordinates, in terms of the component rotations and translations. The analysis focused on the relationship between rotation and horizontal translation. Evidence was presented that these can be separately controlled. 2. In speech, jaw movements were studied during consonant-vowel utterances produced at different rates and volumes. In mastication, bolus placement, compliance, and size as well as chewing rate were manipulated. Jaw movements were recorded using the University of Wisconsin X-ray microbeam system. Jaw rotation and translation were calculated on the basis of the motion of X-ray tracking pellets on the jaw. 3. The average magnitudes of jaw rotation and translation were greater in mastication than in speech. In addition, in speech, it was shown that the average rotation magnitude may vary independent of the horizontal translation magnitude. In mastication, the average magnitude of vertical jaw translation was not dependent on the magnitudes of jaw rotation or horizontal jaw translation. 4. The magnitude of rotation and horizontal jaw translation tended to be correlated when examined on a trial by trial basis. Some subjects also showed a correlation between jaw rotation and vertical jaw translation. However, the proportion of variance accounted for was greater for all subjects in the case of rotation and horizontal translation. 5. Joint space paths in both mastication and speech were found to be straight. The pattern was observed at normal and fast rates of speech and mastication and for loud speech as well. Straight line paths were also observed when subjects produced utterances that had both the syllabic structure and the intonation pattern of speech. The findings suggest that control may be organized in terms of an equilibrium jaw orientation and an equilibrium jaw position. 6. Departures from linearity were also observed. These were typically associated with differences during jaw closing in the end time of rotation and translation. Start time differences were not observed in jaw closing and the movement paths were typically linear within this region.


1998 ◽  
Vol 10 (6) ◽  
pp. 499-504 ◽  
Author(s):  
Shin-ichi Nakajima ◽  
◽  
Toyohiko Hayashi ◽  
Hiroshi Kobayashi ◽  
◽  
...  

Human mastication is performed by coordinated activities of several jaw muscles. To clarify functions of these muscles, we developed a jaw movement simulator (JSN/Sl) consisting of a 2 degrees of freedom (2DOF) mechanism and five muscle actuators able to reproduce jaw movements on a sagittal plane. The actuator is a cable-tendon driven by a DC servomotor controlled by a compliance control scheme to obtain viscoelastic muscle characteristics. To simulate life-like clenching, we controlled occlusal position and force by incorporating position and force sensors, using neural network learning control. Occlusal force successfully converged to a desired value through learning. Tension patterns of muscle actuators during clenching well coincided with human jaw activities.


2000 ◽  
Vol 83 (4) ◽  
pp. 2120-2137 ◽  
Author(s):  
Katsunari Hiraba ◽  
Kazuto Hibino ◽  
Kenji Hiranuma ◽  
Takefumi Negoro

Electromyographic (EMG) activities of the superior (SUP) and inferior heads (INF) of the lateral pterygoid muscle (LPT) were recorded in humans during voluntary stepwise changes in biting force and jaw position that were adopted to exclude the effects of acceleration and velocity of jaw movements on the muscle activity. The SUP behaved like a jaw-closing muscle and showed characteristic activity in relation to the biting force. It showed a considerable amount of background activity (5–32% of the maximum) even in the intercuspal position without teeth clenching and reached a nearly maximum activity at relatively lower biting-force levels than the jaw-closing muscles during increment of the biting force. Stretch reflexes were found in the SUP, the function of which could be to stabilize the condyle against the biting force that pulls the condyle posteriorly. This notion was verified by examining the biomechanics on the temporomandibular joint. The complex movements of the mandibular condyle in a sagittal plane were decomposed into displacement in the anteroposterior direction (Ac) and angle of rotation (RAc) around a kinesiological specific point on the condyle. In relation to Ac, each head of the LPT showed quite a similar behavior to each other in all types of jaw movements across all subjects. Working ranges of the muscle activities were almost constant (Ac <3 mm for the SUP and Ac >3 mm for the INF). The amount of EMG activity of the SUP changed in inverse proportion to Ac showing a hyperbola-like relation, whereas that of the INF changed rather linearly. The EMG amplitude of the SUP showed a quasilinear inverse relation with RAc in the hinge movement during which the condyle rotated with no movement in the anteroposterior direction. This finding suggests that the SUP controls the angular relationship between the articular disk and the condyle. On the other hand, the position of the disk in relation to the maxilla, not to the condyle, is controlled indirectly by the INF because the disk is attached to the condyle by tendinous ligaments.


1990 ◽  
Vol 44 (2) ◽  
pp. 440-453 ◽  
Author(s):  
Kazuo Saeki ◽  
Masahiro Ohta ◽  
Satoru Ishizuka ◽  
Makoto Iwasaki

2012 ◽  
Vol 184-185 ◽  
pp. 1623-1627 ◽  
Author(s):  
Huan Ming Chen ◽  
Zhou Ping Liu

To raise the programming efficiency of arc welding robots, the offline programming system was developed for a Motoman-UP20 robot with redundant degrees of freedom in VC++ integration environment. The system consists of kinematics analysis, motion simulation, welding trajectory plan, welding parameters plan and job file generating module. It can plan the motion path and posture of welding gun for saddle-shape seams, and display the workpiece on the interface synchronically. Job instructions can be made step by step, or generated automatically. Kinematics simulation module and communication module are integrated together, and job files can be exchanged between PC and robot controller via Ethernet to realize remote control.


2001 ◽  
Vol 204 (24) ◽  
pp. 4301-4309 ◽  
Author(s):  
J. Okada ◽  
Y. Toh

SUMMARY Arthropods have hair plates that are clusters of mechanosensitive hairs, usually positioned close to joints, which function as proprioceptors for joint movement. We investigated how angular movements of the antenna of the cockroach (Periplaneta americana) are coded by antennal hair plates. A particular hair plate on the basal segment of the antenna, the scapal hair plate, can be divided into three subgroups: dorsal, lateral and medial. The dorsal group is adapted to encode the vertical component of antennal direction, while the lateral and medial groups are specialized for encoding the horizontal component. Of the three subgroups of hair sensilla, those of the lateral scapal hair plate may provide the most reliable information about the horizontal position of the antenna, irrespective of its vertical position. Extracellular recordings from representative sensilla of each scapal hair plate subgroup revealed the form of the single-unit impulses in response to hair deflection. The mechanoreceptors were characterized as typically phasic-tonic. The tonic discharge was sustained indefinitely (&gt;20 min) as long as the hair was kept deflected. The spike frequency in the transient (dynamic) phase was both velocity- and displacement-dependent, while that in the sustained (steady) phase was displacement-dependent.


1869 ◽  
Vol 6 ◽  
pp. 76-78
Author(s):  
David Brewster

In repeating some of the experiments of Professor Plateau, described in seven interesting memoirs published in “The Transactions of the Belgian Academy,” and in prosecuting his own experiments on the colours of the soap-bubble, the author of this paper observed several new phenomena which may have escaped the notice of the Belgian philosopher.Professor Plateau has described and drawn the beautiful systems of soap-films, obtained by lifting from a soap solution a cube made of wires about one and a half inch long. This system is a polyhedron, composed of twelve similar films stretching from the wires, and united to a plane quadrangular film in the centre. When this vertical film was blown upon, M. Von Rees observed that it was reduced to a line, and then reproduced in a horizontal position, from which it could be blown again into a vertical position.


2009 ◽  
Vol 12 (01) ◽  
pp. 31-43 ◽  
Author(s):  
Rositsa T. Raikova

Less attention is paid to joint reactions when optimization tasks are solved aiming to predict individual muscle forces driving a biomechanical model. The reactions are important, however, for joint stability and for prevention from injuries, especially for fast motions and submaximal loading. The purpose of the paper is to investigate the influence of the joint reaction as a criterion in an objective function and to study the possibilities for prediction of antagonistic co-contraction. Planar elbow flexions in the sagittal plane with duration from 0.4 to 2 s are simulated, and muscle forces and elbow joint reaction are calculated solving numerically optimization tasks formulated for models with one (elbow moment equation only) and two (elbow and shoulder moment equations) degrees of freedom (DOF). The objective function is a weighted sum of muscle forces and joint reaction raised to different powers. The following conclusions can be made: (1) if the joint reaction is included in the objective function, antagonistic co-contraction can be predicted even for 1 DOF model; in some situations the use of such objective function can destroy the synergistic muscles' action; (2) the prediction of antagonistic muscles' co-contraction for 2 DOF model depends on the way the biarticular muscles are modeled, and this is valid for both dynamic and quasistatic conditions; if there are no biarticular muscles, antagonistic co-contraction cannot be predicted in one joint using popular objective functions, like minimum of sum of muscle forces or muscle stresses raised to a power.


Sign in / Sign up

Export Citation Format

Share Document