Reduced calcium tolerance in rat cardiomyocytes after myocardial infarction

2002 ◽  
Vol 175 (4) ◽  
pp. 261-269 ◽  
Author(s):  
I. Sjaastad ◽  
J. G. Bentzen ◽  
S. O. Semb ◽  
A. Ilebekk ◽  
O. M. Sejersted
Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Masayoshi Iwasaki ◽  
Masamichi Koyanagi ◽  
Stefan Rapp ◽  
Corina Schuetz ◽  
Philipp Bushoven ◽  
...  

Mesoangioblasts (MAB) are vessel-associated cells identified during embryonic development. In contrast to hemangioblasts, MAB express mesenchymal (CD73) and endothelial marker, but lack the hematopoietic marker CD45. We recently identified circulating MAB in children. Children-derived MAB showed vigorous proliferation capacity and high telomerase activity. However, the potential of cardiac differentiation in these cells was not elucidated. Therefore, we tested the capacity of children-derived MAB to aquire a cardiomyogenic phenotype. MAB expressed several cardiac transcription factors such as Nkx2.5, GATA4 and MEF2C and the stem cell markers c-kit and islet-1. In order to assess cardiac differentiation capacity, we performed co-culture assays with neonatal rat cardiomyocytes (CM). Immunochemical analysis revealed that MAB expressed cardiac α-sarcomeric actinin 6 days after co-culture. Moreover, human troponin T (TnT) was expressed as demonstrated by human specific RT-PCR. To confirm these data, we examined TnT expression in MAB isolated of a 2 years old patient with a known mutation of TnT. Sequences of the cloned RT-PCR products were identical to human TnT except for the known mutation providing genetic proof of concept for cardiac differentiation. In order to exclude fusion between MAB and CM as a mechanism, we used paraformaldehyde-fixed CM as scaffold. In this assay, human TnT also was detected, indicating that differentiation is sufficient to induce cardiac marker gene expression. Next, we tested the effect of MAB to improve cardiac function. MAB were injected intramuscularly in nude mice after myocardial infarction. Functional analysis using Millar catheter 2 weeks after infarction demonstrated that cell therapy lowered filling pressure and preserved diastolic function when compared to the PBS injected group (LVEDP: −20.3%, tau: −20.6%, vs PBS injected heart). Furthermore, left ventricular volume was also decreased (LVEDV/weight −27.3%). In summary, children-derived MAB express cardiac-specific genes after co-culture with CM and improved cardiac function in vivo. Given that MAB can be easily isolated and expanded from peripheral blood, these cells might be suitable to augment cardiac repair in children with heart failure.


2020 ◽  
Vol 48 (02) ◽  
pp. 341-356
Author(s):  
Chiu-Mei Lin ◽  
Wei-Jen Fang ◽  
Bao-Wei Wang ◽  
Chun-Ming Pan ◽  
Su-Kiat Chua ◽  
...  

MicroRNA 145 (miR-145) is a critical modulator of cardiovascular diseases. The downregulation of myocardial miR-145 is followed by an increase in disabled-2 (Dab2) expression in cardiomyocytes. (-)-epigallocatechin gallate (EGCG) is a flavonoid that has been evaluated extensively due to its diverse pharmacological properties including anti-inflammatory effects. The aim of this study was to investigate the cardioprotective effects of EGCG under hypoxia-induced stress in vitro and in vivo. The hypoxic insult led to the suppression of miR-145 expression in cultured rat cardiomyocytes in a concentration-dependent manner. Western blotting and real-time PCR were performed. In rat myocardial infarction study, in situ hybridization, and immunofluorescent analyses were adopted. The western blot and real-time PCR data revealed that hypoxic stress with 2.5% O2 suppressed the expression of miR-145 and Wnt3a/[Formula: see text]-catenin in cultured rat cardiomyocytes but augmented Dab2. Treatment with EGCG attenuated Dab2 expression, but increased Wnt3a and [Formula: see text]-catenin in hypoxic cultured cardiomyocytes. Following in vivo myocardial infarction (MI) study, the data revealed the myocardial infarct area reduced by 48.5%, 44.6%, and 48.5% in EGCG (50[Formula: see text]mg/kg) or miR-145 dominant or Dab2 siRNA groups after myocardial infarction for 28 days, respectively. This study demonstrated that EGCG increased miR-145, Wnt3a, and [Formula: see text]-catenin expression but attenuated Dab2 expression. Moreover, EGCG ameliorated myocardial ischemia in vivo. The novel suppressive effect was mediated through the miR-145 and Dab2/Wnt3a/[Formula: see text]-catenin pathways.


2020 ◽  
Vol 21 (9) ◽  
pp. 3359
Author(s):  
Zoltán Giricz ◽  
András Makkos ◽  
Rolf Schreckenberg ◽  
Jochen Pöling ◽  
Holger Lörchner ◽  
...  

Swiprosin-1 (EFhD2) is a molecule that triggers structural adaptation of isolated adult rat cardiomyocytes to cell culture conditions by initiating a process known as cell spreading. This process mimics central aspects of cardiac remodeling, as it occurs subsequent to myocardial infarction. However, expression of swiprosin-1 in cardiac tissue and its regulation in vivo has not yet been addressed. The expression of swiprosin-1 was analyzed in mice, rat, and pig hearts undergoing myocardial infarction or ischemia/reperfusion with or without cardiac protection by ischemic pre- and postconditioning. In mouse hearts, swiprosin-1 protein expression was increased after 4 and 7 days in myocardial infarct areas specifically in cardiomyocytes as verified by immunoblotting and histology. In rat hearts, swiprosin-1 mRNA expression was induced within 7 days after ischemia/reperfusion but this induction was abrogated by conditioning. As in cultured cardiomyocytes, the expression of swiprosin-1 was associated with a coinduction of arrestin-2, suggesting a common mechanism of regulation. Rno-miR-32-3p and rno-miR-34c-3p were associated with the regulation pattern of both molecules. Moreover, induction of swiprosin-1 and ssc-miR-34c was also confirmed in the infarct zone of pigs. In summary, our data show that up-regulation of swiprosin-1 appears in the postischemic heart during cardiac remodeling and repair in different species.


2000 ◽  
Vol 157 (2) ◽  
pp. 605-611 ◽  
Author(s):  
Silke Busche ◽  
Stefan Gallinat ◽  
Rainer-Maria Bohle ◽  
Alexander Reinecke ◽  
Jörg Seebeck ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Yi Jiao ◽  
Yi-Fei Fan ◽  
Yu-Ling Wang ◽  
Jun-Yan Zhang ◽  
Shuo Chen ◽  
...  

Many flavonoids have cardioprotection against myocardial ischemia/reperfusion (I/R) injury. Total flavones fromRhododendron simsiiPlanch flower (TFR) can protect myocardial ischemic injuries. However, its protective mechanism is still unknown. The present study was designed to investigate the mechanism of TFR on myocardial I/R and anoxia/reoxygenation (A/R) injuries. Rat model of myocardial I/R injury was made, and myocardial infarction was determined. A/R injury was induced in cultured rat cardiomyocytes; cellular damage was evaluated by measuring cell viability, LDH and cTnT releases, and MDA content. Expressions of ROCK1and ROCK2protein were examined by Western blot analysis, and K+currents were recorded by using whole-cell patch clamp technique. TFR 20~80 mg/kg markedly reduced I/R-induced myocardial infarction. TFR 3.7~300 mg/L significantly inhibited A/R-induced reduction of cell viability, LDH and cTnT releases, and MDA production. Exposure to A/R significantly increased ROCK1and ROCK2expressions in rat cardiomyocytes, but TFR 33.3~300 mg/L obviously inhibited this increase. 300 mg/L TFR significantly augmented inward rectifier K+current and other K+currents in rat cardiomyocytes. These results indicate that TFR has a protective effect on rat cardiomyocytes A/R damage, and the protective mechanism may be engaged with the inhibition of ROCK1and ROCK2and activation of K+channels.


2020 ◽  
Author(s):  
Daisuke MORI ◽  
Shigeru MIYAGAWA ◽  
Takuji KAWAMURA ◽  
Daisuke YOSHIOKA ◽  
Hiroki HATA ◽  
...  

Abstract Although mesenchymal stem cell transplantation has been efficacious in the treatment of ischemic cardiomyopathy, the underlying mechanisms remain unclear. Herein, we investigated whether mitochondrial transfer could explain the success of cell therapy in ischemic cardiomyopathy. Mitochondrial transfer was examined in co-cultures of human adipose-derived mesenchymal stem cells and rat cardiomyocytes under hypoxic conditions. Functional recovery was monitored in a rat model of myocardial infarction following human adipose-derived mesenchymal stem cell transplantation. In vitro, we observed mitochondrial transfer, which required formation of cell-to-cell contacts and synergistically enhanced energy metabolism. Rat cexhibited mitochondrial transfer three days following human adipose-derived mesenchymal stem cell transplantation to the ischemic heart surface post myocardial infarction. We detected donor mitochondrial DNA in the recipient myocardium concomitant with a significant improvement in cardiac function. In conclusion, mitochondrial transfer is vital for successful cell transplantation therapies and promotes improved treatment outcomes in ischemic cardiomyopathy.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Eleni Tseliou ◽  
Liu Weixin ◽  
Jackelyn Valle ◽  
Baiming Sun ◽  
Maria Mirotsou ◽  
...  

Introduction: Adult newts can regenerate amputated cardiac tissue (and whole limbs) without fibrosis, unlike adult mammals which lack such regenerative capacity. Exosomes are nanoparticles which mediate intercellular communication and play a critical role in therapeutic regeneration. Hypothesis: We isolated exosomes from a newt mesodermal cell line, and evaluated their bioactivity in rat models. Methods: A1 cells, derived from the amputated limb buds of Notopthalmus viridescense (Brockes JP, 1988), were expanded in culture. Exosomes were isolated by polyethylene glycol precipitation of A1-conditioned serum-free media (or media conditioned by human dermal fibroblasts [DF] as a control) followed by centrifugation. Bioactivity was tested in vitro on neonatal rat ventricular myocytes (NRVM), and in vivo on acute myocardial infarction in Wistar-Kyoto rats (250μg or 500μg of A1-exosomes or vehicle [placebo] injected intramyocardially). Functional and histological analyses were performed 3 weeks after therapy. Results: A1-conditioned media yielded ~2.8±1Billion particles/ml of 129±1.1 nm diameter. In vitro, A1-exosomes increased the proliferative capacity of NRVM compared to DF-exosomes (4.98±0.89% vs 0.77±0.33%, p=0.035). Priming of DFs with A1-exosomes increased SDF-1 secretion compared to DF-exosomes (755±117pg/ml vs.368±21pg/ml, p=0.03). In vivo, both A1-exosome doses increased cardiac function compared to placebo (EF= 46±1% in 250μg, 49±4% in 500μg vs 36±1% in placebo, p=0.045 by ANOVA). Scar size was markedly decreased (11±1% in 250μg, 9±2% in 500μg vs 18±2% in placebo, p=0.006 by ANOVA), and infarct wall thickness was increased after A1-exosome treatment (1.7±0.11mm in 250μg, 1.85±0.16mm in 500μg vs 1.17±0.11mm in Placebo, p=0.01 by ANOVA). Donor-specific antibodies were present at barely detectable levels in the serum of animals that had been injected with A1-exosomes. Conclusions: Newt exosomes stimulate rat cardiomyocyte proliferation and improve functional and structural outcomes in rats with myocardial infarction. Characterization of the RNA and protein content of newt exosomes, now in progress, may provide clues regarding conserved (or newt-unique) molecular mediators of therapeutic benefit.


2006 ◽  
Vol 291 (2) ◽  
pp. H886-H893 ◽  
Author(s):  
Masaya Takahashi ◽  
Tao-Sheng Li ◽  
Ryo Suzuki ◽  
Toshiro Kobayashi ◽  
Hiroshi Ito ◽  
...  

It is well known that the implantation of bone marrow mononuclear cells (BM-MNCs) into ischemic hearts can induce angiogenesis and improve cardiac function after myocardial infarction, but the precise mechanisms of these actions are unclear. We hypothesize that the cytokines produced by BM-MNCs play a key role in this cell-based therapy. BM-MNCs from rats were cultured under normoxic or hypoxic (1% O2) conditions for 24 h, and then supernatants were collected for study. ELISA and Western blotting analysis showed that various cytokines, including VEGF, IL-1β, PDGF, and IGF-1, were produced from BM-MNCs, some of which were enhanced significantly under hypoxia stimulation. When compared with a control blank medium, the supernatants of BM-MNCs cultured under normoxic or hypoxic conditions inhibited apoptosis significantly and preserved the contractile capacity of isolated adult rat cardiomyocytes in vitro ( P < 0.05). Using a rat model of acute myocardial infarction, we injected the supernatants of BM-MNCs or control medium intramyocardially on day 0 and then intraperitoneally on days 2, 4, and 6 after infarction. When compared with the control medium, the supernatants of BM-MNCs cultured under both normoxic or hypoxic conditions increased the microvessel density and decreased the fibrotic area in the infarcted myocardium significantly, contributing to remarkable improvement in cardiac function. Various cytokines were produced by BM-MNCs, and these cytokines contributed to functional improvement of the infarcted heart by directly preserving the contractile capacity of the myocardium, inhibiting apoptosis of cardiomyocytes, and inducing therapeutic angiogenesis of the infarcted heart.


Sign in / Sign up

Export Citation Format

Share Document