scholarly journals Pentoxifylline decreases in vivo and in vitro tumour necrosis factor-alpha (TNF-α) production in lepromatous leprosy patients with erythema nodosum leprosum (ENL)

1998 ◽  
Vol 111 (2) ◽  
pp. 300-308 ◽  
Author(s):  
Sampaio ◽  
Moraes ◽  
Nery ◽  
Santos ◽  
Matos ◽  
...  
2000 ◽  
Vol 68 (8) ◽  
pp. 4422-4429 ◽  
Author(s):  
Wei Cui ◽  
David C. Morrison ◽  
Richard Silverstein

ABSTRACT Viable Escherichia coli and Staphylococcus aureus bacteria elicited markedly different in vitro tumor necrosis factor alpha (TNF-α) responses when placed in coculture with peritoneal murine macrophages. These include quantitative differences in TNF-α mRNA expression and corresponding protein product secretion as well as kinetic differences in the profiles of the TNF-α responses. Further, lipopolysaccharide (from E. coli) is a major contributing factor to these differences, as revealed by comparative experiments with endotoxin-responsive (C3Heb/FeJ) and endotoxin-hyporesponsive (C3H/HeJ) macrophages. Nevertheless, the eventual overall magnitude of the TNF-α secretion of macrophages in response to S. aureus was at least equivalent to that observed with E. coli, while appearing at time periods hours later than the E. coli-elicited TNF-α response. Both the magnitude and kinetic profile of the TNF-α responses were found to be relatively independent of the rate of bacterial proliferation, at least to the extent that similar results were observed with both viable and paraformaldehyde-killed microbes. Nevertheless, S. aureus treated in culture with the carbapenem antibiotic imipenem manifests markedly altered profiles of TNF-α response, with the appearance of an early TNF-α peak not seen with viable organisms, a finding strikingly similar to that recently reported by our laboratory from in vivo studies (R. Silverstein, J. G. Wood, Q. Xue, M. Norimatsu, D. L. Horn, and D. C. Morrison, Infect. Immun. 68:2301–2308, 2000). In contrast, imipenem treatment of E. coli-cocultured macrophages does not significantly alter the observed TNF-α response either in vitro or in vivo. In conclusion, our data support the concept that the host inflammatory response of cultured mouse macrophages in response to viable gram-positive versus gram-negative microbes exhibits distinctive characteristics and that these distinctions are, under some conditions, altered on subsequent bacterial killing, depending on the mode of killing. Of potential importance, these distinctive in vitro TNF-α profiles faithfully reflect circulating levels of TNF-α in infected mice. These results suggest that coculture of peritoneal macrophages with viable versus antibiotic-killed bacteria and subsequent assessment of cytokine response (TNF-α) may be of value in clarifying, and ultimately controlling, related host inflammatory responses in septic patients.


2007 ◽  
Vol 35 (02) ◽  
pp. 317-328 ◽  
Author(s):  
Jun Liu ◽  
Zheng-Tao Wang ◽  
Li-Li Ji

Neoandrographolide, one of the principal diterpene lactones, isolated from a medicinal herb Andrographis paniculata Nees, was tested in vivo and in vitro for its anti-inflammatory activities and mechanism. Oral administration of neoandrographolide (150 mg/kg) significantly suppressed ear edema induced by dimethyl benzene in mice. Oral administration of neoandrographolide (100–150 mg/kg) also reduced the increase in vascular permeability induced by acetic acid in mice. In vitro studies were performed using the macrophage cell line RAW264.7 to study the effect of neoandrographolide on suppressing phorbol-12-myristate-13-acetate (PMA)-stimulated respiratory bursts and lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α). Respiratory bursts were quantified by chemiluminescence (CL) measurements.Results showed that neoandrographolide suppressed PMA-stimulated respiratory bursts dose-dependently from 30 μM to 150 μM. Neoandrographolide also inhibited NO and TNF-α production in LPS-induced macrophages, contributing to the anti-inflammatory activity of A. paniculata. These results indicate that neoandrographolide possesses significant anti-inflammatory effects, which implies that it would be one of the major contributing components to participate in the anti-inflammatory effect of A. paniculata. and a potential candidate for further clinical trial.


2002 ◽  
Vol 70 (12) ◽  
pp. 6628-6637 ◽  
Author(s):  
Christopher J. Papasian ◽  
Richard Silverstein ◽  
Jian Jun Gao ◽  
David M. Bamberger ◽  
David C. Morrison

ABSTRACT The murine d-galactosamine (d-gal) model of tumor necrosis factor alpha (TNF-α) hypersensitization was used as an initial tool to investigate the potential contribution of TNF-α to lethal intraperitoneal (i.p.) infection with Enterococcus faecalis. d-gal sensitized mice to lethal E. faecalis infection, whereas dexamethasone and neutralizing anti-TNF-α antibody protected d-gal-treated, E. faecalis-infected mice, implicating TNF-α in the lethal response to E. faecalis infection in d-gal-treated mice. Circulating TNF-α was undetectable for at least 8 h following i.p. E. faecalis infection, although low peritoneal levels of TNF-α were detected within 3 h, suggesting that localized TNF-α production contributed to the lethal response to E. faecalis infection in d-gal-treated mice. Although i.p. E. faecalis infection failed to induce a detectable systemic TNF-α response, circulating Interleukin-6 (IL-6) was detected within 3 h of infection. IL-6 was also detected in the peritoneum within an hour of infection, prior to the appearance of peritoneal TNF-α. In striking contrast to in vivo results, E. faecalis induced a potent and rapid TNF-α response from both mouse peritoneal macrophages and the RAW 264.7 cell line in vitro. This led us to hypothesize that TNF-α production in response to E. faecalis infection is suppressed by IL-6 in vivo. In vitro experiments demonstrated a statistically significant, but modest, inhibitory effect of IL-6 on TNF-α production by RAW cells stimulated with E. faecalis. Collectively, these data indicate that acute, lethal E. faecalis infection appears to induce an unusual cytokine response that differs in character from that previously described for most other gram-positive and gram-negative bacteria.


2009 ◽  
Vol 13 (1) ◽  
pp. 48-50 ◽  
Author(s):  
Carly Kirshen ◽  
Nordau Kanigsberg

Background: Alopecia areata is a nonscarring hair loss characterized by well-circumscribed patchy areas, most often on the scalp. The inflammatory cytokine tumor necrosis factor alpha (TNF-α), has been connected with the development of alopecia areata in vivo; thus, the TNF-α inhibitors have been cited as possible treatments for this autoimmune condition. Objective: We report a case of alopecia areata that developed in a 52-year-old woman who was recently started on adalimumab for treatment of her psoriatic arthritis. Results: We discuss the previously published cases in the literature linking alopecia areata to TNF-α inhibitor administration. Our case is the first report of a new-onset alopecia areata following adalimumab. Conclusions: Even though TNF-α is implicated in causing alopecia areata, TNF-α inhibitors have paradoxically been associated with new cases of alopecia areata. It is possible that TNF-α may not be involved in the pathogenesis of alopecia areata, as in vitro studies have suggested.


2001 ◽  
Vol 21 (15) ◽  
pp. 4856-4867 ◽  
Author(s):  
Okot Nyormoi ◽  
Zhi Wang ◽  
Dao Doan ◽  
Maribelis Ruiz ◽  
David McConkey ◽  
...  

ABSTRACT Several reports have linked activating protein 2α (AP-2α) to apoptosis, leading us to hypothesize that AP-2α is a substrate for caspases. We tested this hypothesis by examining the effects of tumor necrosis factor alpha (TNF-α) on the expression of AP-2 in breast cancer cells. Here, we provide evidence that TNF-α downregulates AP-2α and AP-2γ expression posttranscriptionally during TNF-α-induced apoptosis. Both a general caspase antagonist (zVADfmk) and a caspase 6-preferred antagonist (zVEIDfmk) inhibited TNF-α-induced apoptosis and AP-2α downregulation. In vivo tests showed that AP-2α was cleaved by caspases ahead of the DNA fragmentation phase of apoptosis. Recombinant caspase 6 cleaved AP-2α preferentially, although caspases 1 and 3 also cleaved it, albeit at 50-fold or higher concentrations. Activated caspase 6 was detected in TNF-α-treated cells, thus confirming its involvement in AP-2α cleavage. All three caspases cleaved AP-2α at asp19 of the sequence asp-arg-his-asp (DRHD19). Mutating D19 to A19abrogated AP-2α cleavage by all three caspases. TNF-α-induced cleavage of AP-2α in vivo led to AP-2α degradation and loss of DNA-binding activity, both of which were prevented by pretreatment with zVEIDfmk. AP-2α degradation but not cleavage was inhibited in vivo by PS-431 (a proteasome antagonist), suggesting that AP-2α is degraded subsequent to cleavage by caspase 6 or caspase 6-like enzymes. Cells transfected with green fluorescent protein-tagged mutant AP-2α are resistant to TNF-α-induced apoptosis, further demonstrating the link between caspase-mediated cleavage of AP-2α and apoptosis. This is the first report to demonstrate that degradation of AP-2α is a critical event in TNF-α-induced apoptosis. Since the DRHD sequence in vertebrate AP-2 is widely conserved, its cleavage by caspases may represent an important mechanism for regulating cell survival, proliferation, differentiation, and apoptosis.


2003 ◽  
Vol 12 (6) ◽  
pp. 323-328 ◽  
Author(s):  
Shigeru Abe ◽  
Naho Maruyama ◽  
Kazumi Hayama ◽  
Hiroko Ishibashi ◽  
Shigeharu Inoue ◽  
...  

Background:In aromatherapy, essential oils are used as anti-inflammatory remedies, but experimental studies on their action mechanisms are very limited.Aims:To assess their anti-inflammatory activities, effects of essential oils on neutrophil activation were examinedin vitro.Methods:Neutrophil activation was measured by tumor necrosis factor-alpha (TNF-α)-induced adherence reaction of human peripheral neutrophils.Results:All essential oils tested at 0.1% concentration suppressed TNF-α-induced neutrophil adherence, and, in particular, lemongrass, geranium and spearmint oils clearly lowered the reaction even at 0.0125%. Similar inhibitory activities for the neutrophil adherence were obtained by their major constituent terpenoids: citral, geraniol, citronellol and carvone. In contrast, very popular essential oils, tea tree oil and lavender oil, did not display the inhibitory activity at the concentration.Conclusion:Thus, some essential oils used as anti-inflammatory remedies suppress neutrophil activation by TNF-α at a low concentration (0.0125-0.025%)in vitro.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3585-3591 ◽  
Author(s):  
Keith E. Norman ◽  
Andreas G. Katopodis ◽  
Gebhard Thoma ◽  
Frank Kolbinger ◽  
Anne E. Hicks ◽  
...  

Abstract Selectin-dependent rolling is the earliest observable event in the recruitment of leukocytes to inflamed tissues. Several glycoproteins decorated with sialic acid, fucose, and/or sulfate have been shown to bind the selectins. The best-characterized selectin ligand is P-selectin glycoprotein-1 (PSGL-1) that supports P-selectin– dependent rolling in vitro and in vivo. In vitro studies have suggested that PSGL-1 may also be a ligand for E- and L-selectins. To study the in vivo function of PSGL-1, without the influence of other leukocyte proteins, the authors observed the interaction of PSGL-1–coated microspheres in mouse venules stimulated to express P- and/or E-selectin. Microspheres coated with functional recombinant PSGL-1 rolled in surgically stimulated and tumor necrosis factor alpha (TNFα)-stimulated mouse venules. P-selectin deficiency or inhibition abolished microsphere rolling in surgically and TNFα-stimulated venules, whereas E-selectin deficiency or inhibition increased microsphere rolling velocity in TNFα-stimulated venules. The results suggest that P-selectin–PSGL-1 interaction alone is sufficient to mediate rolling in vivo and that E-selectin–PSGL-1 interaction supports slow rolling.


Sign in / Sign up

Export Citation Format

Share Document