Influence of soil solution Ca concentration on short-term K release and fixation of a loamy soil

1997 ◽  
Vol 48 (3) ◽  
pp. 513-522 ◽  
Author(s):  
A. SCHNEIDER
Soil Research ◽  
1988 ◽  
Vol 26 (1) ◽  
pp. 177 ◽  
Author(s):  
DM Weaver ◽  
GSP Ritchie ◽  
GC Anderson ◽  
DM Deeley

The consequences of previous as well as current environmental conditions and management practices on the potential for phosphorus (P) to be lost by drainage from sandy soils in the short term (< 1 year) were studied in the laboratory and the field. The potential for P losses by drainage was estimated by measuring soil solution P levels and rapidly released P. Rapidly released P was measured by determining the concentration of dissolved inorganic P contained in filtered (<0.45 pm) soil solutions after incubating soil at saturation for 15 min at ambient temperature. In the laboratory, sandy soils were incubated with ordinary superphosphate, coastal superphosphate (a granulated mixture of equal parts of superphospate, rock phosphate and elemental sulfur) or lime-superphosphate (a lime-reverted superphosphate with 18% kiln dust) and sequentially desorbed with deionized water. The effects of the extent of leaching, fertilizer type, application rate and the time of contact with the soil on soil solution P levels were investigated. The influence of annual pasture death and summer rainfall on rapidly released P in soils that had been pre-treated by leaching were also investigated. Phosphorus concentrations decreased logarithmically in the successive supernatants of the sequentially desorbed soils. More P was desorbed from soils incubated with superphosphate and lime-superphosphate than soil incubated with coastal superphosphate. At each level of pre-leaching, the P concentrations in the soil solution increased with increasing time. The level, to which the P concentration in the soil solution increased at each time, decreased with increased extent of pre-leaching. The addition of P fertilizers increased the concentration of P in the soil solution. The concentrations increased with increasing application rate and were much higher for superphosphate than for coastal superphosphate; however, there was little effect of contact time on soil solution P levels. Rapidly released P levels after leaching increased during a period of no further leaching. Additional moisture or plant material during this period of no further leaching increased the rate and extent to which rapidly released P increased. Monitoring of rapidly released P in the 0-2, 2-5, 5-10 and 10-20 cm layers of field plots, with and without applications of superphosphate, showed that sampling depth, water flow path, fertilizer management, rainfall pattern and background P levels would affect the estimate of short-term P losses. Rapidly released P in the 0-2 cm layer varied markedly with time and was higher (P < 0.05) than that in lower soil layers. Rapidly released P increased after the winter and spring rains diminished and then decreased after the rains commenced again at the end of the summer. A possible annual cycle of P in sandy soils in a mediterranean climate is postulated by considering the laboratory and field data in combination.


1976 ◽  
Vol 56 (1) ◽  
pp. 9-20 ◽  
Author(s):  
R. W. SHEARD ◽  
A. J. LEYSHON

A laboratory procedure and apparatus design are described for the sampling of the soil solution and dissolved gases below the surface of a flooded soil without disturbance of the soil or the normal diffusion process. Ethylene and CO2 concentration increased in the dissolved gases of a flooded Maryhill loam (Ortho Humic Gleysol) as the duration of flooding increased from zero to 17 days and the redox potential (Eh) decreased. Soluble Fe and Mn slowly increased as the Eh decreased. The addition of NO3-N depressed ethylene formation and the release of soluble Fe and Mn. The addition of sucrose rapidly eliminated NO3-N from the soil solution, reduced the Eh to −330 mV, stimulated ethylene and CO2 formation, and further solubilized Fe and Mn. The accumulation of dry weight, total P and fertilizer P concentrations in corn were reduced by flooding soil for periods up to 12 days. The measurement of Eh, gases and Fe and Mn in the soil solution suggest that ethylene accumulation and O2 depletion were involved in the reduction of fertilizer P uptake.


Weed Science ◽  
1995 ◽  
Vol 43 (2) ◽  
pp. 298-305 ◽  
Author(s):  
Daniel R. Shelton ◽  
Ali M. Sadeghi ◽  
Jeffrey S. Karns ◽  
Cathleen J. Hapeman

Short term incubations (4 d) were conducted to assess the effect of a wetting/drying cycle on atrazine sorption, as well as biodegradation, as a function of various atrazine concentrations (ca. 5, 10, and 25 μg g−1soil) and levels of added crop residues (0, 5, and 10% cornstalks by weight), using a technique that allowed independent analysis of soluble and sorbed atrazine. Soil solution atrazine concentrations decreased, and KdSincreased with increasing crop residues. The sorptive capacity of cornstalks for atrazine was estimated to be 860 μg g−1vs 28 μg g−1for unamended soil. Drying and rewetting resulted in lower soil solution concentrations and decreased extraction efficiencies (13 to 22%) for sorbed atrazine; the effect was most pronounced with added cornstalks. High recoveries of14C from soils (combustion data) indicated that atrazine was not lost to volatilization. Rapid rates of biodegradation were observed in cornstalkamended soils shortly after rewetting; degradation was not observed in unamended soil. A longer incubation (6 wk) was conducted with ca. 10 μg g−1atrazine and 5% cornstalks to assess metabolites and kinetics of biodegradation. Atrazine disappearance was observed after ca. 2 wk with concomitant production of deethyl- and deisopropyl-atrazine at a ratio of ca. 2:1. Dealkylated-atrazine accumulated after ca. 3 wk; there was no evidence for hydroxy-atrazine production. These data suggest that biodegradation may play an important role in atrazine losses in the field despite wetting/drying cycles. In addition, there may be apparent losses of atrazine due to decreased extraction efficiencies as a consequence of wetting/drying cycles, resulting in underestimation of field residues.


2017 ◽  
Vol 33 (3) ◽  
pp. 299-307 ◽  
Author(s):  
Nicholas Clarke ◽  
Silje Skår ◽  
O. Janne Kjønaas ◽  
Kjersti Holt Hanssen ◽  
Tonje Økland ◽  
...  

2017 ◽  
Vol 7 (2) ◽  
pp. 11-16
Author(s):  
Ana Diana Ancas ◽  
M. Profire ◽  
G. Cojocaru

AbstractMost studies on the PAFSIN pipes were oriented monitoring their behavior in laboratory conditions, focusing on the fluid and less influence on the environment laying on the mechanical properties in the short term then extrapolated mathematical term. Moreover, a large part of these studies refer only to the effect on PAFSIN composite samples without taking into account the specificities induced specific geometry pipeline. In this way, the effect PAFSIN pipes can be overlooked, which in practice can lead to significant errors of design and / or execution. Compared to existing studies, taking into account only the effect of a sealant (generally standardized solutions of acid or base) of the PAFSIN pipes, in the article to present the results of tests conducted on PAFSIN pipes buried in different types of land and attempted to surprise the complexity of the interactions of soil solution to the conduit.


2014 ◽  
Vol 63 (1) ◽  
pp. 119-127
Author(s):  
Krisztina Végh ◽  
J. Csillag ◽  
A. Lukács ◽  
B Panwar ◽  
Gy. Füleky

Potassium uptake is the result of numerous simultaneous processes influencing the potassium dynamics in the rhizosphere.The presented research has focused on plant-soil interactions in the potassium supply of soil in the root environment of maize. It was assumed that: 1. roots promote the mobilization of K by the acidification of the rhizosphere soil, 2. roots increase wetting-drying cycles in their environment, and 3. soil total K content affects K release and fixation in the bulk of soil and the root environment.The promoting effect of root activity was detected on K release from soil when feldspar was added as K source to the root environment. A 2-unit reduction of soil pH multiplied K concentration in the soil solution, depending on the feldspar rate. Feldspar application significantly increased the solubility and release of potassium into the soil solution.The effect of pH reduction on the K concentration of soil solution was several magnitudes higher than that of the wetting-drying cycles both in the untreated and feldspar treated soils.Potassium uptake by maize over two generations greatly exceeded the exchangeable pool in the growing media. As a consequence of the exhaustive K uptake K release slowed down to the soil solution, as reflected in the H2O extractable K and ExK contents.Significant K fixation was detected after the K removal of maize in feldspar treated soils. On the contrary, in the treatments without plants increasing feldspar rates increased both H2O extractable K and ExK contents.One-term Langmuir equation, corrected with the originally sorbed amount of K, was fitted to measured data. The maximum amount of potassium adsorption (Kmax, mg∙kg−1) and the equilibrium constant (k) were calculated. The potassium buffering capacity was estimated at zero equilibrium concentration. Both K buffering capacity and the energy of K fixation were high for the rhizosphere soil. In rhizosphere soil samples the energy of K fixation was one magnitude higher as compared to the bulk soil and decreased substantially with feldspar addition. In soils without plants the k equilibrium constant did not change as the result of drying-wetting process only in the case of the 50% soil/feldspar mixture.In the liquid phase of the soil without feldspar application potassium concentration decreased in the one-year drying-wetting cycle, presumably it got into more strongly bounded forms in the low K status soil. In 50% feldspar enriched soil samples potassium concentration in the soil solution increased, likely as a consequence of a slow dissolution of the K content of feldspar.


Soil Research ◽  
2005 ◽  
Vol 43 (5) ◽  
pp. 659 ◽  
Author(s):  
Bhupinderpal-Singh ◽  
M. J. Hedley ◽  
S. Saggar

Information on the dynamics of recently photo-assimilated carbon (C) allocated to roots and root-derived exudates in soils is scarce and experimentally difficult to obtain. We used Rhizon Soil Moisture SamplersTM (RSMS) placed at different depths in soil (20, 40, 80, 120 mm) to monitor short-term dynamics of root and root-derived C at the root–soil interface after 14CO2 pulse-labelling of pasture cores. At the 20 mm depth, 14C activity in soil solution peaked within 2 h of 14CO2 application. The peak of 14C activity took longer to appear and slower to disappear with increased depth. Negligible amounts of 14C as soluble exudates were found in the soil solution. The pattern of initial 14C activity in soil solution, allocation of recently assimilated 14C in roots, and root mass distribution with depth were closely related to each other. This suggested that the rapid appearance of 14CO2 in soil solution is more closely linked to root respiration of recent 14C-assimilates (transferred via shoots to roots) and/or to microbial decomposition of root-released 14C-assimilates than to transfer by diffusion of atmospheric 14CO2 through open soil surface to different depths in soil. The use of RSMS was an effective, simple, and non-destructive method to monitor the dynamics of root-derived 14C by in situ sampling of soil solution.


Sign in / Sign up

Export Citation Format

Share Document