scholarly journals CotB is essential for complete activation of green light‐induced genes during complementary chromatic adaptation in Fremyella diplosiphon

2003 ◽  
Vol 50 (3) ◽  
pp. 781-793 ◽  
Author(s):  
Barbara E. Balabas ◽  
Beronda L. Montgomery ◽  
Laura E. Ong ◽  
David M. Kehoe
2008 ◽  
Vol 190 (11) ◽  
pp. 4069-4074 ◽  
Author(s):  
Juliana R. Bordowitz ◽  
Beronda L. Montgomery

ABSTRACT We used wild-type UTEX481; SF33, a shortened-filament mutant strain that shows normal complementary chromatic adaptation pigmentation responses; and FdBk14, an RcaE-deficient strain that lacks light-dependent pigmentation responses, to investigate the molecular basis of the photoregulation of cellular morphology in the cyanobacterium Fremyella diplosiphon. Detailed microscopic and biochemical analyses indicate that RcaE is required for the photoregulation of cell and filament morphologies of F. diplosiphon in response to red and green light.


Microbiology ◽  
2010 ◽  
Vol 156 (3) ◽  
pp. 731-741 ◽  
Author(s):  
Bagmi Pattanaik ◽  
Beronda L. Montgomery

We have characterized a Fremyella diplosiphon TonB protein (FdTonB) and investigated its function during complementary chromatic adaptation. Sequence similarity analysis of FdTonB (571 aa) led to identification of several conserved domains characteristic of TonB proteins, including an N-terminal transmembrane domain, a central proline-rich spacer and a C-terminal TonB-related domain (TBRD). We identified a novel glycine-rich domain containing (Gly-X) n repeats. To assess FdTonB function, we constructed a ΔtonB mutant through homologous recombination based upon truncation of the central proline-rich spacer, glycine-rich domain and TBRD. Our ΔtonB mutant exhibited an aberrant cellular morphology under green light, with expanded cell width compared to the parental wild-type (WT) strain. The cellular morphology of the ΔtonB mutant recovered upon WT tonB expression. Interestingly, tonB expression was found to be independent of RcaE. As ΔtonB and WT strains respond in the same way when grown under iron-replete versus iron-limited conditions, our results suggest that FdTonB is not involved in the classic TonB function of mediating cellular adaptation to iron limitation, but exhibits a novel function related to the photoregulation of cellular morphology in F. diplosiphon.


2012 ◽  
Vol 114 (1) ◽  
pp. 43-58 ◽  
Author(s):  
Bertha Pérez-Gómez ◽  
Guillermo Mendoza-Hernández ◽  
Tecilli Cabellos-Avelar ◽  
Lourdes Elizabeth Leyva-Castillo ◽  
Emma Berta Gutiérrez-Cirlos ◽  
...  

1973 ◽  
Vol 58 (2) ◽  
pp. 419-435 ◽  
Author(s):  
Allen Bennett ◽  
Lawrence Bogorad

Fluorescent and red light environments generate greatly different patterns of pigmentation and morphology in Fremyella diplosiphon. Most strikingly, red-illuminated cultures contain no measurable C-phycoerythrin and have a mean filament length about 10 times shorter than fluorescent-illuminated cultures. C-phycoerythrin behaves as a photoinducible constituent of this alga. Spectrophotometric and immunochemical procedures were devised so that C-phycoerythrin metabolism could be studied quantitatively with [14C]-phenylalanine pulse-chased cultures. Transfer of red-illuminated cultures to fluorescent light initiates C-phycoerythrin production by essentially de novo synthesis. C-phycoerythrin is not degraded to any significant extent in cultures continuously illuminated with fluorescent light. Transfer of fluorescent-illuminated cultures to red light causes an abrupt cessation of C-phycoerythrin synthesis. The C-phycoerythrin content of cultures adapting to red light decreases and subsequently becomes constant. Loss of C-phycoerythrin is not brought about by metabolic degradation, but rather by a decrease in mean filament length which is effected by transcellular breakage. In this experimental system, light influences intracellular C-phycoerythrin levels by regulating the rate of synthesis of the chromoprotein.


2002 ◽  
Vol 184 (4) ◽  
pp. 962-970 ◽  
Author(s):  
Laura Ort Seib ◽  
David M. Kehoe

ABSTRACT During complementary chromatic adaptation (CCA), cyanobacterial light harvesting structures called phycobilisomes are restructured in response to ambient light quality shifts. Transcription of genes encoding components of the phycobilisome is differentially regulated during this process: red light activates cpcB2A2, whereas green light coordinately activates the cpeCDE and cpeBA operons. Three signal transduction components that regulate CCA have been isolated to date: a sensor-photoreceptor (RcaE) and two response regulators (RcaF and RcaC). Mutations in the genes encoding these components affect the accumulation of both cpcB2A2 and cpeBA gene products. We have isolated and characterized a new pigmentation mutant called Turquoise 1. We demonstrate that this mutant phenotype is due to a dramatic decrease in cpeBA transcript abundance and results from a lesion in the cpeR gene. However, in this mutant cpeCDE RNA levels remain near those found in wild-type cells. Our results show that the coordinate regulation of cpeBA and cpeCDE by green light can be uncoupled by the loss of CpeR, and we furnish the first genetic evidence that different regulatory mechanisms control these two operons. Sequence analysis of CpeR reveals that it shares limited sequence similarity to members of the PP2C class of protein serine/threonine phosphatases. We also demonstrate that cpeBA and cpeCDE retain light quality responsiveness in a mutant lacking the RcaE photoreceptor. This provides compelling evidence for the partial control of CCA through an as-yet-uncharacterized second light quality sensing system.


1999 ◽  
pp. 187-194
Author(s):  
Hans C. P. Matthijs ◽  
Jeroen H. Geerdink ◽  
Hans Balke ◽  
Andrea Haker ◽  
Hendrik Schubert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document