scholarly journals Close stars and an inactive accretion disc in Sgr A*: eclipses and flares

2003 ◽  
Vol 343 (1) ◽  
pp. L15-L19 ◽  
Author(s):  
S. Nayakshin ◽  
R. Sunyaev
Keyword(s):  
2017 ◽  
Vol 468 (1) ◽  
pp. L26-L30 ◽  
Author(s):  
I. M. Christie ◽  
M. Petropoulou ◽  
P. Mimica ◽  
D. Giannios
Keyword(s):  

2016 ◽  
Vol 459 (3) ◽  
pp. 2420-2431 ◽  
Author(s):  
I. M. Christie ◽  
M. Petropoulou ◽  
P. Mimica ◽  
D. Giannios
Keyword(s):  

2013 ◽  
Vol 433 (1) ◽  
pp. L25-L29 ◽  
Author(s):  
Dimitrios Giannios ◽  
Lorenzo Sironi
Keyword(s):  

2019 ◽  
Vol 881 (1) ◽  
pp. 62 ◽  
Author(s):  
Daniel C. M. Palumbo ◽  
Sheperd S. Doeleman ◽  
Michael D. Johnson ◽  
Katherine L. Bouman ◽  
Andrew A. Chael
Keyword(s):  

2016 ◽  
Vol 461 (1) ◽  
pp. 552-559 ◽  
Author(s):  
S. Dibi ◽  
S. Markoff ◽  
R. Belmont ◽  
J. Malzac ◽  
J. Neilsen ◽  
...  
Keyword(s):  
X Ray ◽  

2012 ◽  
Vol 746 (1) ◽  
pp. L10 ◽  
Author(s):  
Joshua C. Dolence ◽  
Charles F. Gammie ◽  
Hotaka Shiokawa ◽  
Scott C. Noble

2020 ◽  
Vol 500 (1) ◽  
pp. 291-300
Author(s):  
V Braito ◽  
J N Reeves ◽  
P Severgnini ◽  
R Della Ceca ◽  
L Ballo ◽  
...  

ABSTRACT Past Suzaku, XMM–Newton, and NuSTAR observations of the nearby (z = 0.03233) bright Seyfert 2 galaxy MCG-03-58-007 revealed the presence of two deep and blue-shifted iron K-shell absorption line profiles. These could be explained with the presence of two phases of a highly ionized, high column density accretion disc wind outflowing with vout1 ∼ −0.1c and vout2 ∼ −0.2c. Here we present two new observations of MCG-03-58-007: one was carried out in 2016 with Chandra and one in 2018 with Swift. Both caught MCG-03-58-007 in a brighter state ($F_{{\mathrm{2}-10\, keV}} \sim 4 \times 10^{-12}$ erg cm−2 s−1) confirming the presence of the fast disc wind. The multi-epoch observations of MCG-03-58-007 covering the period from 2010 to 2018 were then analysed. These data show that the lower velocity component outflowing with vout1 ∼ −0.072 ± 0.002c is persistent and detected in all the observations, although it is variable in column density in the range NH ∼ 3–8 × 1023 cm−2. In the 2016 Swift observation we detected again the second faster component outflowing with vout2 ∼ −0.2c, with a column density ($N_{\mbox{H}}=7.0^{+5.6}_{-4.1}\times 10^{23}$ cm−2), similar to that seen during the Suzaku observation. However during the Chandra observation 2 yr earlier, this zone was not present (NH < 1.5 × 1023 cm−2), suggesting that this faster zone is intermittent. Overall the multi-epochs observations show that the disc wind in MCG-03-58-007 is not only powerful, but also extremely variable, hence placing MCG-03-58-007 among unique disc winds such as the one seen in the famous QSO PDS456. One of the main results of this investigation is the consideration that these winds could be extremely variable, sometime appearing and sometime disappearing; thus to reach solid and firm conclusions about their energetics multiple observations are mandatory.


2020 ◽  
Vol 500 (3) ◽  
pp. 3213-3239
Author(s):  
Mattia Libralato ◽  
Daniel J Lennon ◽  
Andrea Bellini ◽  
Roeland van der Marel ◽  
Simon J Clark ◽  
...  

ABSTRACT The presence of massive stars (MSs) in the region close to the Galactic Centre (GC) poses several questions about their origin. The harsh environment of the GC favours specific formation scenarios, each of which should imprint characteristic kinematic features on the MSs. We present a 2D kinematic analysis of MSs in a GC region surrounding Sgr A* based on high-precision proper motions obtained with the Hubble Space Telescope. Thanks to a careful data reduction, well-measured bright stars in our proper-motion catalogues have errors better than 0.5 mas yr−1. We discuss the absolute motion of the MSs in the field and their motion relative to Sgr A*, the Arches, and the Quintuplet. For the majority of the MSs, we rule out any distance further than 3–4 kpc from Sgr A* using only kinematic arguments. If their membership to the GC is confirmed, most of the isolated MSs are likely not associated with either the Arches or Quintuplet clusters or Sgr A*. Only a few MSs have proper motions, suggesting that they are likely members of the Arches cluster, in agreement with previous spectroscopic results. Line-of-sight radial velocities and distances are required to shed further light on the origin of most of these massive objects. We also present an analysis of other fast-moving objects in the GC region, finding no clear excess of high-velocity escaping stars. We make our astro-photometric catalogues publicly available.


Universe ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 37
Author(s):  
Lorenzo Iorio

Recently, the secular pericentre precession was analytically computed to the second post-Newtonian (2PN) order by the present author with the Gauss equations in terms of the osculating Keplerian orbital elements in order to obtain closer contact with the observations in astronomical and astrophysical scenarios of potential interest. A discrepancy in previous results from other authors was found. Moreover, some of such findings by the same authors were deemed as mutually inconsistent. In this paper, it is demonstrated that, in fact, some calculation errors plagued the most recent calculations by the present author. They are explicitly disclosed and corrected. As a result, all of the examined approaches mutually agree, yielding the same analytical expression for the total 2PN pericentre precession once the appropriate conversions from the adopted parameterisations are made. It is also shown that, in the future, it may become measurable, at least in principle, for some of the recently discovered short-period S-stars in Sgr A*, such as S62 and S4714.


Sign in / Sign up

Export Citation Format

Share Document