Estimation accuracy of multi‐cell massive multiple‐input multiple‐output systems in correlated Rician fading channel

2015 ◽  
Vol 51 (22) ◽  
pp. 1830-1832
Author(s):  
H. AL‐Salihi ◽  
F. Said ◽  
A. Nallanathan ◽  
K. Wong
Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4839
Author(s):  
Kong ◽  
Xu

A fully-polarimetric unitary multiple signal classification (UMUSIC) tomography algorithm is proposed, which can be used for acquiring high-resolution three-dimensional (3D) imagery, in a polarimetric multiple-input multiple-output synthetic aperture radar (MIMO-SAR) with a small number of baselines. In terms of the elevation resolution, UMUSIC provides an improvement over standard MUSIC by utilizing the conjugate of the complex sample data and converting the complex covariance matrix into a real matrix. The combination of UMUSIC and fully-polarimetric data permits a further reduction of the noise of the sample covariance matrix, which is obtained through pixel averaging of multiple two-dimensional (2D) images. Considering the consistency of four polarizations, this algorithm not only makes scattering centers have the same estimated height in four polarizations, but it also improves the estimation accuracy. Simulation results show that this algorithm outperforms the popular distributed compressed sensing (DCS). Image processing of measured data of an aircraft model using a multiple-input multiple-output synthetic aperture radar (MIMO-SAR) with six baselines is presented to validate the proposed algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Baobao Liu ◽  
Tao Xue ◽  
Cong Xu ◽  
Yongjun Liu

A low complexity unitary estimating signal parameter via rotational invariance techniques (ESPRIT) algorithm is presented for angle estimation in bistatic multiple-input-multiple-output (MIMO) radar. The devised algorithm only requires calculating two submatrices covariance matrix, which reduces the computation cost in comparison with subspace methods. Moreover, the signal subspace can be efficiently acquired by exploiting the NystrÖm method, which only needs O M N K 2 flops. Thus, the presented algorithm has an essentially diminished computational effort, especially useful when K ≪ M N , while it can achieve efficient angle estimation accuracy as well as the existing algorithms. Several theoretical analysis and simulation results are provided to demonstrate the usefulness of the proposed scheme.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Qiu-Ming Zhu ◽  
Xiang-Bin Yu ◽  
Jun-Bo Wang ◽  
Da-Zhuan Xu ◽  
Xiao-Min Chen

A new generation method for spatial and temporal correlated multiple-input multiple-output (MIMO) Nakagami fading channel is proposed, which has low complexity and is applicable for arbitrary fading parameters and prespecified correlation coefficients of different subchannel. The new scheme can be divided into two steps: (1) generate independent Nakagami fading sequences for each subchannel based on a novel rejection method; (2) introduce the temporal and spatial correlation based on the relationships between Rayleigh, Gamma, and Nakagami random processes. The analysis and simulation results show that the proposed simulator has a good agreement with the theoretical model on fading envelope distribution, spatial-temporal correlation characteristic.


Sign in / Sign up

Export Citation Format

Share Document