Acid colloidal silica slurry for Cu CMP

2004 ◽  
Vol 40 (1) ◽  
pp. 26
Author(s):  
Nam-Hoon Kim ◽  
Eui-Goo Chang
2008 ◽  
Vol 600-603 ◽  
pp. 831-834 ◽  
Author(s):  
Joon Ho An ◽  
Gi Sub Lee ◽  
Won Jae Lee ◽  
Byoung Chul Shin ◽  
Jung Doo Seo ◽  
...  

2inch 6H-SiC (0001) wafers were sliced from the ingot grown by a conventional physical vapor transport (PVT) method using an abrasive multi-wire saw. While sliced SiC wafers lapped by a slurry with 1~9㎛ diamond particles had a mean height (Ra) value of 40nm, wafers after the final mechanical polishing using the slurry of 0.1㎛ diamond particles exhibited Ra of 4Å. In this study, we focused on investigation into the effect of the slurry type of chemical mechanical polishing (CMP) on the material removal rate of SiC materials and the change in surface roughness by adding abrasives and oxidizer to conventional KOH-based colloidal silica slurry. The nano-sized diamond slurry (average grain size of 25nm) added in KOH-based colloidal silica slurry resulted in a material removal rate (MRR) of 0.07mg/hr and the Ra of 1.811Å. The addition of oxidizer (NaOCl) in the nano-size diamond and KOH based colloidal silica slurry was proven to improve the CMP characteristics for SiC wafer, having a MRR of 0.3mg/hr and Ra of 1.087Å.


2007 ◽  
Vol 556-557 ◽  
pp. 753-756 ◽  
Author(s):  
Tomohisa Kato ◽  
Keisuke Wada ◽  
Eiji Hozomi ◽  
Hiroyoshi Taniguchi ◽  
Tomonori Miura ◽  
...  

We report SiC wafer polishing study to achieve high throughput with extremely flat, smooth and damageless surface. The polishing consists of three process, wafer grinding, lapping and chemical mechanical polishing (CMP), which are completed in shortest about 200 minutes in total for 2 inch wafer. Specimens of 4H- and 6H-SiC were provided from slicing single crystal as wafers oriented (0001) with 0 or 8 degrees offset angle toward to <112 _ 0>. By the first grinding using a diamond whetstone wheel, we realized flat surface on the wafers with small TTV error of 1 μm in 15 minutes. After second process of lapping, the wafers were finished by CMP using colloidal silica slurry. AFM observation showed not only scratch-free surface but also atomic steps on the wafers after CMP. Rms marks extremely flat value of 0.08 nm in 10 μm square area.


2005 ◽  
Vol 867 ◽  
Author(s):  
Kyoung-Ho Bu ◽  
Brij M. Moudgil

AbstractAmong various properties of chemical mechanical polishing (CMP) slurry, selectivity plays a key role in global planarization of high density and small pattern size shallow trench isolation (STI) process. Lack of adequate selectivity can lead to defects such as dishing and erosion. To improve the selectivity of STI CMP process, CMP characteristics of silica and silicon nitride wafer were investigated using colloidal silica slurry as a function of slurry pH. Sodium dodecyl sulfate (SDS), an anionic surfactant, was added to increase the selectivity of the slurry. As a result, selectivity increased from 3 to 25. It was concluded that selective passivation layer formed on silicon nitride wafer surface at acidic slurry pH range was responsible for the observed selectivity increase. Adsorption characteristics of SDS on silica and silicon nitride were measured as a function of slurry pH and concentration of SDS. As indicated by zeta potential behavior under acidic pH conditions, SDS adsorption on silicon nitride was significantly higher han silica due to the electrostatic forces. Significantly higher SDS coating on silicone nitride seems to have resulted in lubrication layer leading to increased polishing selectivity.


2015 ◽  
Vol 36 (10) ◽  
pp. 106002 ◽  
Author(s):  
Haiwen Deng ◽  
Baimei Tan ◽  
Baohong Gao ◽  
Chenwei Wang ◽  
Zhangbing Gu ◽  
...  
Keyword(s):  

2007 ◽  
Vol 121-123 ◽  
pp. 1229-1232
Author(s):  
Jin Hyung Park ◽  
Ung Yu Paik ◽  
Jea Gun Park

The purpose of this study is to reveal the mechanism of wafer touch polishing by high purity colloidal silica slurry containing organic surfactants such as HEC (hydroxyl-ethyl cellulose). The effect of surfactant concentration on wafer touch polishing was studied with the aim of improving roughness on wafer surface after polishing. As a result, the level of haze and micro-roughness are decreased with the decrease of surfactant concentration.


2011 ◽  
Vol 2011.64 (0) ◽  
pp. 415-416
Author(s):  
Toshiro DOI ◽  
Syuhei KUROKAWA ◽  
Osamu OHNISHI ◽  
Yoji UMESAKI ◽  
Hiroyuki KONO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document