Design-for-test approach of an asynchronous network-on-chip architecture and its associated test pattern generation and application

2009 ◽  
Vol 3 (5) ◽  
pp. 487 ◽  
Author(s):  
X.-T. Tran ◽  
Y. Thonnart ◽  
J. Durupt ◽  
V. Beroulle ◽  
C. Robach
VLSI Design ◽  
2001 ◽  
Vol 12 (4) ◽  
pp. 551-562 ◽  
Author(s):  
B. K. S. V. L. Varaprasad ◽  
L. M. Patnaik ◽  
H. S. Jamadagni ◽  
V. K. Agrawal

Testing and power consumption are becoming two critical issues in VLSI design due to the growing complexity of VLSI circuits and remarkable success and growth of low power applications (viz. portable consumer electronics and space applications). On chip Built In Self Test (BIST) is a cost-effective test methodology for highly complex VLSI devices like Systems On Chip. This paper deals with cost-effective Test Pattern Generation (TPG) schemes in BIST. We present a novel methodology based on the use of a suitable Linear Feedback Shift Register (LFSR) which cycles through the required sequences (test vectors) aiming at a desired fault coverage causing minimum circuit toggling and hence low power consumption while testing. The proposed technique uses circuit simulation data for modeling. We show how to identify the LFSR using graph theory techniques and compute its feedback coefficients (i.e., its characteristic polynomial) for realization of a Test Pattern Generator.


2019 ◽  
Vol 52 (7-8) ◽  
pp. 995-1001
Author(s):  
Avinash Yadlapati ◽  
Hari Kishore Kakarla

Low-power design for test is the need of the hour for any system-on-chip designer. The low-power design techniques have been a major challenge to both the designer as well as the testing engineer. With so many advancements in low-power technology in the phase of register transfer logic design, functional verification, register transfer logic and physical synthesis and physical design. Design for test is not an exception to this. The low-power design-for-test techniques can be applied at various levels of the design-for-test flow as in the scan insertion stage, automatic test pattern generation simulations stage, testing stage, and so on. Some of the reasons for the high-power utilization in the design-for-test phase can be due to the external circuitry being inserted during the design phase and not used in the functional mode. The complete circuit will be active in the test mode only. In this paper, the focus will be primarily on reducing the power during the automatic test pattern generation scan synthesis phase. All the scan flops are connected by a common scan clock with a fixed frequency. The intention of this study is to divide the clock frequency by half and make sure that the power is reduced without affecting any timing violations. Since the scan clock frequency is low, it can be further divided to ensure that power is reduced without affecting the testing process of the chip.


Author(s):  
Rudolf Schlangen ◽  
Jon Colburn ◽  
Joe Sarmiento ◽  
Bala Tarun Nelapatla ◽  
Puneet Gupta

Abstract Driven by the need for higher test-compression, increasingly many chip-makers are adopting new DFT architectures such as “Extreme-Compression” (XTR, supported by Synopsys) with on-chip pattern generation and MISR based compression of chain output data. This paper discusses test-loop requirements in general and gives Advantest 93k specific guidelines on test-pattern release and ATE setup necessary to enable the most established EFA techniques such as LVP and SDL (aka DLS, LADA) within the XTR test architecture.


Sign in / Sign up

Export Citation Format

Share Document