High‐resolution ISAR imaging based on two‐dimensional group sparse recovery

2018 ◽  
Vol 12 (1) ◽  
pp. 82-86 ◽  
Author(s):  
Xingyu He ◽  
Ningning Tong ◽  
Xiaowei Hu ◽  
Weike Feng
2015 ◽  
Vol 63 (5) ◽  
pp. 2098-2111 ◽  
Author(s):  
Shunsheng Zhang ◽  
Wei Zhang ◽  
Zhulin Zong ◽  
Zhong Tian ◽  
Tat Soon Yeo

Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
K. H. Downing ◽  
S. G. Wolf ◽  
E. Nogales

Microtubules are involved in a host of critical cell activities, many of which involve transport of organelles through the cell. Different sets of microtubules appear to form during the cell cycle for different functions. Knowledge of the structure of tubulin will be necessary in order to understand the various functional mechanisms of microtubule assemble, disassembly, and interaction with other molecules, but tubulin has so far resisted crystallization for x-ray diffraction studies. Fortuitously, in the presence of zinc ions, tubulin also forms two-dimensional, crystalline sheets that are ideally suited for study by electron microscopy. We have refined procedures for forming the sheets and preparing them for EM, and have been able to obtain high-resolution structural data that sheds light on the formation and stabilization of microtubules, and even the interaction with a therapeutic drug.Tubulin sheets had been extensively studied in negative stain, demonstrating that the same protofilament structure was formed in the sheets and microtubules. For high resolution studies, we have found that the sheets embedded in either glucose or tannin diffract to around 3 Å.


2001 ◽  
Vol 120 (5) ◽  
pp. A226-A226 ◽  
Author(s):  
W LAMMERS ◽  
S DHANASEKARAN ◽  
J SLACK ◽  
B STEPHEN

1985 ◽  
Vol 54 (03) ◽  
pp. 626-629 ◽  
Author(s):  
M Meyer ◽  
F H Herrmann

SummaryThe platelet proteins of 9 thrombasthenic patients from 7 families were analysed by high resolution two-dimensional gel electrophoresis (HR-2DE) and crossed immunoelectrophoresis (CIE). In 7 patients both glycoproteins (GPs) IIb and Ilia were absent or reduced to roughly the same extent. In two related patients only a trace of GP Ilb-IIIa complex was detected in CIE, but HR-2DE revealed a glycopeptide in the position of GP Ilia in an amount comparable to type II thrombasthenia. This GP Ilia-like component was neither recognized normally by anti-GP Ilb-IIIa antibodies nor labeled by surface iodination. In unreduced-reduced two-dimensional gel electrophoresis two components were observed in the region of GP Ilia. The assumption of a structural variant of GP Ilia in the two related patients is discussed.


2021 ◽  
Vol 13 (12) ◽  
pp. 2326
Author(s):  
Xiaoyong Li ◽  
Xueru Bai ◽  
Feng Zhou

A deep-learning architecture, dubbed as the 2D-ADMM-Net (2D-ADN), is proposed in this article. It provides effective high-resolution 2D inverse synthetic aperture radar (ISAR) imaging under scenarios of low SNRs and incomplete data, by combining model-based sparse reconstruction and data-driven deep learning. Firstly, mapping from ISAR images to their corresponding echoes in the wavenumber domain is derived. Then, a 2D alternating direction method of multipliers (ADMM) is unrolled and generalized to a deep network, where all adjustable parameters in the reconstruction layers, nonlinear transform layers, and multiplier update layers are learned by an end-to-end training through back-propagation. Since the optimal parameters of each layer are learned separately, 2D-ADN exhibits more representation flexibility and preferable reconstruction performance than model-driven methods. Simultaneously, it is able to better facilitate ISAR imaging with limited training samples than data-driven methods owing to its simple structure and small number of adjustable parameters. Additionally, benefiting from the good performance of 2D-ADN, a random phase error estimation method is proposed, through which well-focused imaging can be acquired. It is demonstrated by experiments that although trained by only a few simulated images, the 2D-ADN shows good adaptability to measured data and favorable imaging results with a clear background can be obtained in a short time.


Sign in / Sign up

Export Citation Format

Share Document