Maritime transportation along the Northern Sea Route

Author(s):  
Alexandra Middleton
2019 ◽  
pp. 21-44
Author(s):  
Ju.V. Zvorykina ◽  
K.S. Teteryatnikov

The article is devoted to the analysis of the role of the Northern Sea Route (NSR) in the socio-economic development of the Arctic zone of Russia. The authors believe that climate change, gradually leading to the melting of polar ice, opens up new opportunities for the development of Arctic resources and navigation in the seas of the Arctic Ocean. Of particular interest to the NSR are non-Arctic countries, critically dependent on the supply of foreign mineral and carbon resources, as well as on the export of their goods to Europe. Among them, China stands out, considering the NSR as the Arctic Blue Economic Corridor as part of the global Silk Road system. The NSR is intended to become an essential tool for further development of the Arctic zone of Russia. Development of port infrastructure and creation of a modern ocean and maritime fleet will accelerate the pace of socio-economic development of this strategically important region. To do this, it is necessary to adopt a federal law on special system of preferences for investors, including foreign ones, implementing their projects in the Arctic. Among such preferences there are preferential profit tax rates, reduction in Mineral Extraction Tax (MET) rates, a declarative procedure for VAT refunds, a simplified procedure for granting land plots and unchanged conditions for the implementation of investment projects. In addition, it is important to make the NSR safe and profitable both in terms of quality of service and of price for the shippers. In particular, the payment for icebreakers’ escort of vessels should be competitive and reasonable. The largest Russian private and state-owned companies should be involved into Arctic projects. It is important to synchronize the Arctic oil and gas projects with nuclear and LNG icebreakers’ construction, as well as with the launch of two logistics hubs in Murmansk and Kamchatka. In this case, year-round NSR navigation will be organized, which will ensure the high competitiveness of Russian products supplied to the Asian Pacific markets.


2021 ◽  
Vol 13 (2) ◽  
pp. 703
Author(s):  
Megan Drewniak ◽  
Dimitrios Dalaklis ◽  
Anastasia Christodoulou ◽  
Rebecca Sheehan

In recent years, a continuous decline of ice-coverage in the Arctic has been recorded, but these high latitudes are still dominated by earth’s polar ice cap. Therefore, safe and sustainable shipping operations in this still frozen region have as a precondition the availability of ice-breaking support. The analysis in hand provides an assessment of the United States’ and Canada’s polar ice-breaking program with the purpose of examining to what extent these countries’ relevant resources are able to meet the facilitated growth of industrial interests in the High North. This assessment will specifically focus on the maritime transportation sector along the Northwest Passage and consists of four main sections. The first provides a very brief description of the main Arctic passages. The second section specifically explores the current situation of the Northwest Passage, including the relevant navigational challenges, lack of infrastructure, available routes that may be used for transit, potential choke points, and current state of vessel activity along these routes. The third one examines the economic viability of the Northwest Passage compared to that of the Panama Canal; the fourth and final section is investigating the current and future capabilities of the United States’ and Canada’s ice-breaking fleet. Unfortunately, both countries were found to be lacking the necessary assets with ice-breaking capabilities and will need to accelerate their efforts in order to effectively respond to the growing needs of the Arctic. The total number of available ice-breaking assets is impacting negatively the level of support by the marine transportation system of both the United States and Canada; these two countries are facing the possibility to be unable to effectively meet the expected future needs because of the lengthy acquisition and production process required for new ice-breaking fleets.


2021 ◽  
Vol 208 ◽  
pp. 105630
Author(s):  
Zheng Wan ◽  
Anwei Nie ◽  
Jihong Chen ◽  
Jiawei Ge ◽  
Chen Zhang ◽  
...  

Author(s):  
Chien-Chang Chou

Navigational safety is an important issue in maritime transportation. The most frequent type of maritime accident in the port and coastal waters is the ship collision. Although some ship collision models have been developed in the past, few have taken account of wind and sea current effects. However, wind and sea current are critical factors in ship maneuvering. Therefore, based on the previous collision model without wind and sea current effects, this study further develops a ship collision model with wind and sea current effects. Finally, a comparison of the results for the proposed collision model in this study and the ship maneuvering simulator is shown to illustrate the effectiveness of the proposed mathematical model in this paper, followed by the conclusions and suggestions given to navigators, port managers, and governmental maritime departments to improve navigational safety in port and coastal waters.


2021 ◽  
Vol 1 ◽  
pp. 1023-1032
Author(s):  
Erik Aleksander Veitch ◽  
Thomas Kaland ◽  
Ole Andreas Alsos

AbstractArtificial intelligence is transforming how we interact with vehicles. We examine the case of Maritime Autonomous Surface Ships (MASS), which are emerging as a safer and more effective solution for maritime transportation. Despite the focus on autonomy, humans are predicted to have a central role in MASS operations from a Shore Control Centre (SCC). Here, operators will provide back-up control in the event of system failure. There are signification design challenges with such a system. The most critical is human-system interaction in autonomy (H-SIA). We consider humans as the source of resilience in the system for adapting to unexpected events and managing safety. We ask, can Human-Centred Design (HCD) be used to create resilient interactions between MASS and SCC? Work has been done in resilience engineering for complex systems but has not been extended to H-SIA in transportation. “Resilient interaction design” is relevant as we progress from design to operational phase. We adopted the ISO 9421-210 guideline to structure our HCD approach. The result is an SCC designed for 1 Autonomy Operator (AO). The contribution is a demonstration of how resilient interaction design may lead to safer and more effective H-SIA in transportation.


2021 ◽  
Vol 678 (1) ◽  
pp. 012021
Author(s):  
Iu Guzov ◽  
N Polyakov ◽  
V Titov ◽  
A Vashchuk

Sign in / Sign up

Export Citation Format

Share Document