scholarly journals Using population synthesis of massive stars to study the interstellar medium near OB associations

2009 ◽  
Vol 504 (2) ◽  
pp. 531-542 ◽  
Author(s):  
R. Voss ◽  
R. Diehl ◽  
D. H. Hartmann ◽  
M. Cerviño ◽  
J. S. Vink ◽  
...  
1999 ◽  
Vol 16 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Fabian Walter

AbstractHigh resolution HI observations of nearby dwarf galaxies (most of which are situated in the M81 group at a distance of about 3·2 Mpc) reveal that their neutral interstellar medium (ISM) is dominated by hole-like features most of which are expanding. A comparison of the physical properties of these holes with the ones found in more massive spiral galaxies (such as M31 and M33) shows that they tend to reach much larger sizes in dwarf galaxies. This can be understood in terms of the galaxy's gravitational potential. The origin of these features is still a matter of debate. In general, young star forming regions (OB-associations) are held responsible for their formation. This picture, however, is not without its critics and other mechanisms such as the infall of high velocity clouds, turbulent motions or even gamma ray bursters have been recently proposed. Here I will present one example of a supergiant shell in IC 2574 which corroborates the picture that OB associations are indeed creating these structures. This particular supergiant shell is currently the most promising case to study the effects of the combined effects of stellar winds and supernova explosions which shape the neutral interstellar medium of (dwarf) galaxies.


1999 ◽  
Vol 193 ◽  
pp. 636-644
Author(s):  
Elias Brinks ◽  
Fabian Walter

Neutral hydrogen (H I) is a magnificent tool when studying the structure of the interstellar medium (ISM) as it is relatively easily observable and can be mapped at good spatial and velocity resolution with modern instruments. Moreover, it traces the cool (∼ 100 K) and warm (∼ 5000 K) neutral gas which together make up about 60%, or the bulk, of the ISM. The currently accepted picture is that stellar winds and subsequent supernovae are the origin for the clearly defined holes or bubbles within the more or less smooth neutral medium. The H I can therefore serve indirectly as a tracer of the hot interstellar medium (HIM) left behind after the most massive stars within an OB association have gone off as supernovae. A splendid example is the dwarf galaxy IC 2574 for which we discuss H I, optical and X-ray observations.


1991 ◽  
Vol 143 ◽  
pp. 323-334
Author(s):  
Martin Cohen

I update previous estimates of the separate contributions for radiative energy, integrated total stellar wind mass and dust mass from Wolf-Rayet stars and other massive (OBA) stars. In the context of the intriguing dusty WC9 stars, I: (1) discuss the observability (or otherwise) between 0.4 and 23 μm of the condensation route from hot gas to carbon-rich grains; (2) urge caution in the use of 10 μm infrared spectra of these luminous stars to deduce the importance of silicates as a component of the interstellar medium, and (3) speculate on a possible new method for discovering new members of this relatively rare subtype based on IRAS Low Resolution Spectra. I review the observational evidence for dust condensation around SN 1987A.


1991 ◽  
Vol 147 ◽  
pp. 3-10
Author(s):  
D. P. Cox

There have been several recent changes in perspective on the diffuse interstellar environment, including recognition of a thick disk of warm gas, cosmic rays, and magnetic field. In addition, evidence for a pervasive hot phase driven by supernova disruption has weakened to the point that a quasihomogeneous warm intercloud gas may occupy most of the interstellar volume at midplane, with individual bubbles created by supernovae and OB associations occupying perhaps 10 and 20 per cent respectively. The bubble population is sufficient to explain the high stage ions (0 VI, N V, C IV, perhaps Si IV) found in the disk, though possibly not those found at higher z. The estimated midplane pressure has increased, leaving the thermal pressure inside clouds almost negligible. The reduced porosity of the medium, its greater thickness, and its larger pressure all act to suppress fountain activity, either arising from the disk generally, or from the blowout of superbubbles. Finally, there appears to be a peculiar coincidence between the cloud heating mechanism and the activity determining the interstellar pressure.


1991 ◽  
Vol 148 ◽  
pp. 139-144 ◽  
Author(s):  
Robert C. Kennicutt

The H II regions in the Magellanic Clouds provide an opportunity to characterize the global star formation properties of a galaxy at close range. They also provide a unique laboratory for testing empirical tracers of the massive star formation rates and initial mass functions in more distant galaxies, and for studying the dynamical interactions between massive stars and the interstellar medium. This paper discusses several current studies in these areas.


2020 ◽  
Vol 117 (36) ◽  
pp. 21873-21879
Author(s):  
A. Wallner ◽  
J. Feige ◽  
L. K. Fifield ◽  
M. B. Froehlich ◽  
R. Golser ◽  
...  

Nuclides synthesized in massive stars are ejected into space via stellar winds and supernova explosions. The solar system (SS) moves through the interstellar medium and collects these nucleosynthesis products. One such product is60Fe, a radionuclide with a half-life of 2.6 My that is predominantly produced in massive stars and ejected in supernova explosions. Extraterrestrial60Fe has been found on Earth, suggesting close-by supernova explosions ∼2 to 3 and ∼6 Ma. Here, we report on the detection of a continuous interstellar60Fe influx on Earth over the past ∼33,000 y. This time period coincides with passage of our SS through such interstellar clouds, which have a significantly larger particle density compared to the local average interstellar medium embedding our SS for the past few million years. The interstellar60Fe was extracted from five deep-sea sediment samples and accelerator mass spectrometry was used for single-atom counting. The low number of 19 detected atoms indicates a continued but low influx of interstellar60Fe. The measured60Fe time profile over the 33 ky, obtained with a time resolution of about ±9 ky, does not seem to reflect any large changes in the interstellar particle density during Earth’s passage through local interstellar clouds, which could be expected if the local cloud represented an isolated remnant of the most recent supernova ejecta that traversed the Earth ∼2 to 3 Ma. The identified60Fe influx may signal a late echo of some million-year-old supernovae with the60Fe-bearing dust particles still permeating the interstellar medium.


2016 ◽  
Vol 12 (S329) ◽  
pp. 386-386
Author(s):  
Sara R. Berlanas ◽  
Artemio Herrero ◽  
Fernando Comerón ◽  
Anna Pasquali ◽  
Sergio Simón-Díaz

Cygnus OB2 is a rich and relatively close (d~1.4 kpc) OB association in our Galaxy. It represents an ideal testbed for our theories about self-enrichment processes produced by pollution of the interstellar medium by successive generations of massive stars. Comerón & Pasquali (2012, A&A, 543, A101) found a correlation between the age of young stellar groups in Cygnus OB2 and their Galactic longitude. If is associated with a chemical composition gradient, it could support these self-enrichment processes.


1998 ◽  
Vol 15 (1) ◽  
pp. 118-122 ◽  
Author(s):  
Rosemary F. G. Wyse ◽  
Annette M. N. Ferguson ◽  
Jay S. Gallagher ◽  
Deidre A. Hunter

AbstractWe present results, some preliminary, from a major new study of the star formation properties of a sample of nearby disk galaxies (Ferguson 1997). Our emphasis is on the faint outer regions of disks. Hα images, combined with broad-band images and spectroscopy of HII regions, constrain the present and past star formation rates and chemical enrichment. These data also allow study of faint diffuse ionised gas, which traces the influence of massive stars on their environment, and the structure of the interstellar medium.


Sign in / Sign up

Export Citation Format

Share Document