scholarly journals The first frost in the Pipe Nebula

2018 ◽  
Vol 610 ◽  
pp. A9 ◽  
Author(s):  
Miwa Goto ◽  
Jeffrey D. Bailey ◽  
Seyit Hocuk ◽  
Paola Caselli ◽  
Gisela B. Esplugues ◽  
...  

Context. Spectroscopic studies of ices in nearby star-forming regions indicate that ice mantles form on dust grains in two distinct steps, starting with polar ice formation (H2O rich) and switching to apolar ice (CO rich). Aims. We test how well the picture applies to more diffuse and quiescent clouds where the formation of the first layers of ice mantles can be witnessed. Methods. Medium-resolution near-infrared spectra are obtained toward background field stars behind the Pipe Nebula. Results. The water ice absorption is positively detected at 3.0 μm in seven lines of sight out of 21 sources for which observed spectra are successfully reduced. The peak optical depth of the water ice is significantly lower than those in Taurus with the same AV. The source with the highest water-ice optical depth shows CO ice absorption at 4.7 μm as well. The fractional abundance of CO ice with respect to water ice is 16-6+7%, and about half as much as the values typically seen in low-mass star-forming regions. Conclusions. A small fractional abundance of CO ice is consistent with some of the existing simulations. Observations of CO2 ice in the early diffuse phase of a cloud play a decisive role in understanding the switching mechanism between polar and apolar ice formation.

2018 ◽  
Vol 609 ◽  
pp. A125 ◽  
Author(s):  
M. Wienen ◽  
F. Wyrowski ◽  
K. M. Menten ◽  
J. S. Urquhart ◽  
C. M. Walmsley ◽  
...  

Context. The initial conditions of molecular clumps in which high-mass stars form are poorly understood. In particular, a more detailed study of the earliest evolutionary phases is needed. The APEX Telescope Large Area Survey of the whole inner Galactic disk at 870 μm, ATLASGAL, has therefore been conducted to discover high-mass star-forming regions at different evolutionary phases. Aims. We derive properties such as velocities, rotational temperatures, column densities, and abundances of a large sample of southern ATLASGAL clumps in the fourth quadrant. Methods. Using the Parkes telescope, we observed the NH3 (1, 1) to (3, 3) inversion transitions towards 354 dust clumps detected by ATLASGAL within a Galactic longitude range between 300° and 359° and a latitude within ± 1.5°. For a subsample of 289 sources, the N2H+ (1–0) line was measured with the Mopra telescope. Results. We measured a median NH3 (1, 1) line width of ~ 2 km s-1, rotational temperatures from 12 to 28 K with a mean of 18 K, and source-averaged NH3 abundances from 1.6 × 10-6 to 10-8. For a subsample with detected NH3 (2, 2) hyperfine components, we found that the commonly used method to compute the (2, 2) optical depth from the (1, 1) optical depth and the (2, 2) to (1, 1) main beam brightness temperature ratio leads to an underestimation of the rotational temperature and column density. A larger median virial parameter of ~ 1 is determined using the broader N2H+ line width than is estimated from the NH3 line width of ~ 0.5 with a general trend of a decreasing virial parameter with increasing gas mass. We obtain a rising NH3 (1, 1)/N2H+ line-width ratio with increasing rotational temperature. Conclusions. A comparison of NH3 line parameters of ATLASGAL clumps to cores in nearby molecular clouds reveals smaller velocity dispersions in low-mass than high-mass star-forming regions and a warmer surrounding of ATLASGAL clumps than the surrounding of low-mass cores. The NH3 (1, 1) inversion transition of 49% of the sources shows hyperfine structure anomalies. The intensity ratio of the outer hyperfine structure lines with a median of 1.27 ± 0.03 and a standard deviation of 0.45 is significantly higher than 1, while the intensity ratios of the inner satellites with a median of 0.9 ± 0.02 and standard deviation of 0.3 and the sum of the inner and outer hyperfine components with a median of 1.06 ± 0.02 and standard deviation of 0.37 are closer to 1.


2018 ◽  
Vol 14 (A30) ◽  
pp. 102-102
Author(s):  
Jungmi Kwon

AbstractMagnetic fields are ubiquitous in various scales of astronomical objects, and they are considered as playing significant roles from star to galaxy formations. However, the role of the magnetic fields in star forming regions is less well understood because conventional optical polarimetry is hampered by heavy extinction by dust. We have been conducting extensive near-infrared polarization survey of various star-forming regions from low- and intermediate-mass to high-mass star-forming regions, using IRSF/SIRPOL in South Africa. Not only linear but also circular polarizations have been measured for more than a dozen of regions. Both linear and circular polarimetric observations at near-infrared wavelengths are useful tools to study the magnetic fields in star forming regions, although infrared circular polarimetry has been less explored so far. In this presentation, we summarize our results of the near-infrared polarization survey of star forming regions and its comparison with recent submillimeter polarimetry results. Such multi-wavelength approaches can be extended to the polarimetry using ALMA, SPICA in future, and others. We also present our recent results of the first near-infrared imaging polarimetry of young stellar objects in the Circinus molecular cloud, which has been less studied but a very intriguing cluster containing numerous signs of active low-mass star formation.


2018 ◽  
Vol 617 ◽  
pp. A1 ◽  
Author(s):  
I. Kamp ◽  
A. Scheepstra ◽  
M. Min ◽  
L. Klarmann ◽  
P. Riviere-Marichalar

Aims. This paper investigates how the far-IR water ice features can be used to infer properties of disks around T Tauri stars and the water ice thermal history. We explore the power of future observations with SOFIA/HIRMES and SPICA’s proposed far-IR instrument SAFARI. Methods. A series of detailed radiative transfer disk models around a representative T Tauri star are used to investigate how the far-IR water ice features at 45 and 63 μm change with key disk properties: disk size, grain sizes, disk dust mass, dust settling, and ice thickness. In addition, a series of models is devised to calculate the water ice emission features from warmup, direct deposit, and cooldown scenarios of the water ice in disks. Results. Photodesorption from icy grains in disk surfaces weakens the mid-IR water ice features by factors of 4–5. The far-IR water ice emission features originate from small grains at the surface snow line in disks at distance of 10–100 au. Unless this reservoir is missing in disks (e.g., transitional disks with large cavities), the feature strength does not change. Grains larger than 10 μm do not contribute to the features. Grain settling (using turbulent description) affects the strength of the ice features by at most 15%. The strength of the ice feature scales with the disk dust mass and water ice fraction on the grains, but saturates for dust masses higher than 10−4 M⊙ and for ice mantles that increase the dust mass by more than 50%. The various thermal histories of water ice leave an imprint on the shape of the features (crystalline and/or amorphous) and on the peak strength and position of the 45 μm feature. SOFIA/HIRMES can only detect crystalline ice features that are much stronger than those simulated in our standard T Tauri disk model in deep exposures (1 h). SPICA/SAFARI can detect the typical ice features in our standard T Tauri disk model in short exposures (10 min). Conclusions. The sensitivity of SPICA/SAFARI will allow the detailed study of the 45 and 63 μm water ice feature in unbiased surveys of T Tauri stars in nearby star forming regions and an estimate of the mass of their ice reservoir. The water ice emission features carry an imprint of the thermal history of the ice, and thus can distinguish between various formation and transport scenarios. Amorphous ice at 45 μm that has a much broader and flatter peak could be detected in deep surveys if the underlying continuum can be well characterized and the baseline stability of SAFARI is better than a few percent.


2006 ◽  
Vol 2 (S237) ◽  
pp. 457-457
Author(s):  
Yumiko Oasa

Young brown dwarfs have been identified in a significant population in various star forming regions. Some deep surveys have yielded less massive objects with planetary-mass (e.g., Oasa et al. 1999; Lucas & Roche 2000). Nevertheless, it is not yet clear how abundant these very low-mass objects are formed. S106 is one of the nearest massive star-forming regions associated with prominent bipolar nebulae and an HII region. We have conducted near-infrared photometric and spectroscopic observations of very low-mass young stellar objects (YSOs) in the S106 region.


2017 ◽  
Vol 12 (S330) ◽  
pp. 309-312
Author(s):  
C. F. Manara ◽  
T. Prusti ◽  
J. Voirin ◽  
E. Zari

AbstractUnderstanding how young stars and their circumstellar disks form and evolve is key to explain how planets form. The evolution of the star and the disk is regulated by different processes, both internal to the system or related to their environment. The former include accretion of material onto the central star, wind emission, and photoevaporation of the disk due to high-energy radiation from the central star. These are best studied spectroscopically, and the distance to the star is a key parameter in all these studies. Here we present new estimates of the distance to a complex of nearby star-forming clouds obtained combining TGAS distances with measurement of extinction on the line of sight. Furthermore, we show how we plan to study the effects of the environment on the evolution of disks with Gaia, using a kinematic modelling code we have developed to model young star-forming regions.


2015 ◽  
Vol 11 (S315) ◽  
pp. 61-68
Author(s):  
Shu-ichiro Inutsuka ◽  
Tsuyoshi Inoue ◽  
Kazunari Iwasaki ◽  
Takashi Hosokawa ◽  
Masato I. N. Kobayashi

AbstractWe discuss an overall picture of star formation in the Galaxy. Recent high-resolution magneto-hydrodynamical simulations of two-fluid dynamics with cooling/heating and thermal conduction have shown that the formation of molecular clouds requires multiple episodes of supersonic compression. This finding enables us to create a new scenario of molecular cloud formation through interacting shells or bubbles on galactic scales. We estimate the ensemble-averaged growth rate of individual molecular clouds, and predict the associated cloud mass function. This picture naturally explains the accelerated star formation over many million years that was previously reported by stellar age determination in nearby star forming regions. The recent claim of cloud-cloud collisions as a mechanism for forming massive stars and star clusters can be naturally accommodated in this scenario. This explains why massive stars formed in cloud-cloud collisions follows the power-law slope of the mass function of molecular cloud cores repeatedly found in low-mass star forming regions.


2012 ◽  
Vol 538 ◽  
pp. A140 ◽  
Author(s):  
P. D. Klaassen ◽  
L. Testi ◽  
H. Beuther

2018 ◽  
Vol 609 ◽  
pp. A129 ◽  
Author(s):  
L. Colzi ◽  
F. Fontani ◽  
P. Caselli ◽  
C. Ceccarelli ◽  
P. Hily-Blant ◽  
...  

The ratio between the two stable isotopes of nitrogen, 14N and 15N, is well measured in the terrestrial atmosphere (~272), and for the pre-solar nebula (~441, deduced from the solar wind). Interestingly, some pristine solar system materials show enrichments in 15N with respect to the pre-solar nebula value. However, it is not yet clear if and how these enrichments are linked to the past chemical history because we have only a limited number of measurements in dense star-forming regions. In this respect, dense cores, which are believed to be the precursors of clusters and also contain intermediate- and high-mass stars, are important targets because the solar system was probably born within a rich stellar cluster, and such clusters are formed in high-mass star-forming regions. The number of observations in such high-mass dense cores has remained limited so far. In this work, we show the results of IRAM-30 m observations of the J = 1−0 rotational transition of the molecules HCN and HNC and their 15N-bearing counterparts towards 27 intermediate- and high-mass dense cores that are divided almost equally into three evolutionary categories: high-mass starless cores, high-mass protostellar objects, and ultra-compact Hii regions. We have also observed the DNC(2–1) rotational transition in order to search for a relation between the isotopic ratios D/H and 14N/15N. We derive average 14N/15N ratios of 359 ± 16 in HCN and of 438 ± 21 in HNC, with a dispersion of about 150–200. We find no trend of the 14N/15N ratio with evolutionary stage. This result agrees with what has been found for N2H+ and its isotopologues in the same sources, although the 14N/15N ratios from N2H+ show a higher dispersion than in HCN/HNC, and on average, their uncertainties are larger as well. Moreover, we have found no correlation between D/H and 14N/15N in HNC. These findings indicate that (1) the chemical evolution does not seem to play a role in the fractionation of nitrogen, and that (2) the fractionation of hydrogen and nitrogen in these objects is not related.


Sign in / Sign up

Export Citation Format

Share Document