scholarly journals Planck’s dusty GEMS

2017 ◽  
Vol 604 ◽  
pp. A117 ◽  
Author(s):  
R. Cañameras ◽  
N. Nesvadba ◽  
R. Kneissl ◽  
B. Frye ◽  
R. Gavazzi ◽  
...  

We present an analysis of high-resolution ALMA interferometry of CO(4–3) line emission and dust continuum in the “Ruby” (PLCK_G244.8+54.9), a bright, gravitationally lensed galaxy at z = 3.0 discovered with the Planck all-sky survey. The Ruby is the brightest of Planck’s dusty GEMS, a sample of 11 of the brightest gravitationally lensed high-redshift galaxies on the extragalactic sub-mm sky. We resolve the high-surface-brightness continuum and CO line emission of the Ruby in several extended clumps along a partial, nearly circular Einstein ring with 1.4′′ diameter around a massive galaxy at z = 1.5. Local star-formation intensities are up to 2000 M⊙ yr-1 kpc-2, amongst the highest observed at high redshift, and clearly in the range of maximal starbursts. Gas-mass surface densities are a few × 104M⊙ pc-2. The Ruby lies at, and in part even above, the starburst sequence in the Schmidt-Kennicutt diagram, and at the limit expected for star formation that is self-regulated through the kinetic energy injection from radiation pressure, stellar winds, and supernovae. We show that these processes can also inject sufficient kinetic energy and momentum into the gas to explain the turbulent line widths, which are consistent with marginally gravitationally bound molecular clouds embedded in a critically Toomre-stable disk. The star-formation efficiency is in the range 1–10% per free-fall time, consistent with the notion that the pressure balance that sets the local star-formation law in the Milky Way may well be universal out to the highest star-formation intensities. AGN feedback is not necessary to regulate the star formation in the Ruby, in agreement with the absence of a bright AGN component in the infrared and radio regimes.

2020 ◽  
Vol 493 (3) ◽  
pp. 4315-4332 ◽  
Author(s):  
Xiangcheng Ma ◽  
Michael Y Grudić ◽  
Eliot Quataert ◽  
Philip F Hopkins ◽  
Claude-André Faucher-Giguère ◽  
...  

ABSTRACT We report the formation of bound star clusters in a sample of high-resolution cosmological zoom-in simulations of z ≥ 5 galaxies from the Feedback In Realistic Environments project. We find that bound clusters preferentially form in high-pressure clouds with gas surface densities over $10^4\, \mathrm{ M}_{\odot }\, {\rm pc}^{-2}$, where the cloud-scale star formation efficiency is near unity and young stars born in these regions are gravitationally bound at birth. These high-pressure clouds are compressed by feedback-driven winds and/or collisions of smaller clouds/gas streams in highly gas-rich, turbulent environments. The newly formed clusters follow a power-law mass function of dN/dM ∼ M−2. The cluster formation efficiency is similar across galaxies with stellar masses of ∼107–$10^{10}\, \mathrm{ M}_{\odot }$ at z ≥ 5. The age spread of cluster stars is typically a few Myr and increases with cluster mass. The metallicity dispersion of cluster members is ∼0.08 dex in $\rm [Z/H]$ and does not depend on cluster mass significantly. Our findings support the scenario that present-day old globular clusters (GCs) were formed during relatively normal star formation in high-redshift galaxies. Simulations with a stricter/looser star formation model form a factor of a few more/fewer bound clusters per stellar mass formed, while the shape of the mass function is unchanged. Simulations with a lower local star formation efficiency form more stars in bound clusters. The simulated clusters are larger than observed GCs due to finite resolution. Our simulations are among the first cosmological simulations that form bound clusters self-consistently in a wide range of high-redshift galaxies.


2017 ◽  
Vol 608 ◽  
pp. A144 ◽  
Author(s):  
C. Yang ◽  
A. Omont ◽  
A. Beelen ◽  
Y. Gao ◽  
P. van der Werf ◽  
...  

We present the IRAM-30 m observations of multiple-J CO (Jup mostly from 3 up to 8) and [C I](3P2 → 3P1) ([C I](2–1) hereafter) line emission in a sample of redshift ~2–4 submillimeter galaxies (SMGs). These SMGs are selected among the brightest-lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Forty-seven CO lines and 7 [C I](2–1) lines have been detected in 15 lensed SMGs. A non-negligible effect of differential lensing is found for the CO emission lines, which could have caused significant underestimations of the linewidths, and hence of the dynamical masses. The CO spectral line energy distributions (SLEDs), peaking around Jup ~ 5–7, are found to be similar to those of the local starburst-dominated ultra-luminous infrared galaxies and of the previously studied SMGs. After correcting for lensing amplification, we derived the global properties of the bulk of molecular gas in the SMGs using non-LTE radiative transfer modelling, such as the molecular gas density nH2 ~ 102.5–104.1 cm-3 and the kinetic temperature Tk  ~ 20–750 K. The gas thermal pressure Pth ranging from~105 K cm-3 to 106 K cm-3 is found to be correlated with star formation efficiency. Further decomposing the CO SLEDs into two excitation components, we find a low-excitation component with nH2 ~ 102.8–104.6 cm-3 and Tk  ~ 20–30 K, which is less correlated with star formation, and a high-excitation one (nH2 ~ 102.7–104.2 cm-3, Tk  ~ 60–400 K) which is tightly related to the on-going star-forming activity. Additionally, tight linear correlations between the far-infrared and CO line luminosities have been confirmed for the Jup ≥ 5 CO lines of these SMGs, implying that these CO lines are good tracers of star formation. The [C I](2–1) lines follow the tight linear correlation between the luminosities of the [C I](2–1) and the CO(1–0) line found in local starbursts, indicating that [C I] lines could serve as good total molecular gas mass tracers for high-redshift SMGs as well. The total mass of the molecular gas reservoir, (1–30) × 1010M⊙, derived based on the CO(3–2) fluxes and αCO(1–0) = 0.8 M⊙ ( K km s-1 pc2)-1, suggests a typical molecular gas depletion time tdep ~ 20–100 Myr and a gas to dust mass ratio δGDR ~ 30–100 with ~20%–60% uncertainty for the SMGs. The ratio between CO line luminosity and the dust mass L′CO/Mdust appears to be slowly increasing with redshift for high-redshift SMGs, which need to be further confirmed by a more complete SMG sample at various redshifts. Finally, through comparing the linewidth of CO and H2O lines, we find that they agree well in almost all our SMGs, confirming that the emitting regions of the CO and H2O lines are co-spatially located.


2016 ◽  
Vol 3 (6) ◽  
pp. 160025 ◽  
Author(s):  
Zhi-Yu Zhang ◽  
Padelis P. Papadopoulos ◽  
R. J. Ivison ◽  
Maud Galametz ◽  
M. W. L. Smith ◽  
...  

Images of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H 2 gas velocity fields and enclosed H 2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H 2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H 2 gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to millimetre/submillimetre wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nevertheless identify a unique signature of CMB-affected continuum brightness distributions, namely an increasing rather than diminishing contrast between such brightness distributions and the CMB when the cold dust in distant galaxies is imaged at frequencies beyond the Raleigh–Jeans limit. For the molecular gas tracers, the same effect makes the atomic carbon lines maintain a larger contrast than the CO lines against the CMB.


2019 ◽  
Vol 15 (S341) ◽  
pp. 226-230
Author(s):  
Christian Binggeli ◽  
Erik Zackrisson ◽  
Xiangcheng Ma ◽  
Akio K. Inoue ◽  
Anton Vikaeus ◽  
...  

AbstractRecently, spectroscopic detections of O[III] 88 μm and Ly-α emission lines from the z ≍ 9.1 galaxy MACS1149-JD1 have been presented, and with these, some interesting properties of this galaxy were uncovered. One such property is that MACS1149-JD1 exhibits a significant Balmer break at around rest-frame 4000 Å, which may indicate that the galaxy has experienced large variations in star formation rate prior to z ∼ 9, with a rather long period of low star formation activity. While some simulations predict large variations in star formation activity in high-redshift galaxies, it is unclear whether the simulations can reproduce the kind of variations seen in MACS1149-JD1. Here, we utilize synthetic spectra of simulated galaxies from two simulation suites in order to study to what extent these can accurately reproduce the spectral features (specifically the Balmer break) observed in MACS1149-JD1. We show that while the simulations used in this study produce galaxies with varying star formation histories, galaxies such as MACS1149-JD1 would be very rare in the simulations. In principle, future observations with the James Webb Space Telescope may tell us if MACS1149-JD1 represents something rare, or if such galaxies are more common than predicted by current simulations.


2019 ◽  
Vol 622 ◽  
pp. A18
Author(s):  
H. R. Stacey ◽  
J. P. McKean ◽  
N. J. Jackson ◽  
P. N. Best ◽  
G. Calistro Rivera ◽  
...  

Determining the star-forming properties of radio-quiet quasars is important for understanding the co-evolution of star formation and black hole accretion. We present the detection of the gravitationally lensed radio-quiet quasars SDSS J1055+4628, SDSS J1313+5151, and SBS 1520+530 at 144 MHz, which fall in the HETDEX Spring Field targeted in the LOFAR Two-metre Sky Survey (LoTSS) first full data release. We compare their radio and far-infrared luminosities relative to the radio–infrared correlation and find that their radio luminosities can be explained by star formation. The implied star formation rates derived from their radio and infrared luminosities are between 20 and 300 M ⊙ yr−1. These detections represent the first study of gravitationally lensed sources with LOFAR, opening a new frequency window for investigating the star-forming properties of high-redshift quasars at radio wavelengths. We consider the implications for future data releases and estimate that many of the objects in our parent sample will be detected during LoTSS, significantly increasing the fraction of gravitationally lensed radio-quiet quasars with radio detections.


2010 ◽  
Vol 6 (S277) ◽  
pp. 291-295
Author(s):  
D. J. Pisano ◽  
K. Rabidoux ◽  
C. A. Garland ◽  
R. Guzmán ◽  
F. J. Castander ◽  
...  

AbstractLuminous compact blue galaxies (LCBGs) are a diverse class of galaxies characterized by high luminosity, blue color, and high surface brightness that sit at the critical juncture of galaxies evolving from the blue to the red sequence. As part of our multi-wavelength survey of local LCBGs, we have been studying the HI content of these galaxies using both single-dish telescopes and interferometers. Our goals are to determine if single-dish HI observations represent a true measure of the dynamical mass of LCBGs and to look for signatures of recent interactions that may be triggering star formation in LCBGs. Our data show that while some LCBGs are undergoing interactions, many appear isolated. While all LCBGs contain HI and show signatures of rotation, the population does not lie on the Tully-Fisher relation nor can it evolve onto it. Furthermore, the HI maps of many LCBGs show signatures of dynamically hot components, suggesting that we are seeing the formation of a thick disk or spheroid in at least some LCBGs. There is good agreement between the HI and Hα kinematics for LCBGs, and both are similar in appearance to the Hα kinematics of high redshift star-forming galaxies. Our combined data suggest that star formation in LCBGs is primarily quenched by virial heating, consistent with model predictions.


2012 ◽  
Vol 8 (S295) ◽  
pp. 177-177
Author(s):  
Joel Leja ◽  
Pieter van Dokkum ◽  

AbstractIt is generally accepted that local elliptical galaxies assembled most of their mass in a burst of star formation between 1 < z < 3, yet today, their star formation has been almost entirely quenched. In order to constrain this quenching mechanism, we measure Hα line emission in galaxies sorted by multiple galaxy properties as a function of redshift to what galaxy parameter best predicts quiescence. This is done for samples of the most massive, most luminous, and galaxies with the highest velocity dispersion both locally (0.05 < z < 0.07 in the SDSS) and at high redshift (0.7 < z < 1.5 in 3D-HST). It is demonstrated through spectral stacking that velocity dispersion results in the lowest Hα line equivalent width both locally and at high redshift. The spatial distribution of the emission line flux is available from grism spectroscopy: the line flux from the high dispersion stack is centrally peaked and thus likely associated with AGN activity rather than star formation, strengthening this conclusion. Since velocity dispersion may also be the best predictor of halo mass (Wake et al. 2012), this may imply that the quenching mechanism is directly related to halo mass.


1995 ◽  
Vol 442 ◽  
pp. 569 ◽  
Author(s):  
Filippo Mannucci ◽  
Steven V. W. Beckwith

2015 ◽  
Vol 802 (1) ◽  
pp. L11 ◽  
Author(s):  
Nanyao Lu ◽  
Yinghe Zhao ◽  
C. Kevin Xu ◽  
Yu Gao ◽  
Tanio Díaz-Santos ◽  
...  

2020 ◽  
Vol 496 (4) ◽  
pp. 5160-5175 ◽  
Author(s):  
Alessandro Lupi ◽  
Andrea Pallottini ◽  
Andrea Ferrara ◽  
Stefano Bovino ◽  
Stefano Carniani ◽  
...  

ABSTRACT Far-infrared (FIR) emission lines are a powerful tool to investigate the properties of the interstellar medium, especially in high-redshift galaxies, where ALMA observations have provided unprecedented information. Interpreting such data with state-of-the-art cosmological simulations post-processed with cloudy, has provided insights on the internal structure and gas dynamics of these systems. However, no detailed investigation of the consistency and uncertainties of this kind of analysis has been performed to date. Here, we compare different approaches to estimate FIR line emission from state-of-the-art cosmological simulations, either with cloudy or with on-the-fly non-equilibrium chemistry. We find that [C ii]158μ predictions are robust to the model variations we explored. [O i] emission lines, that typically trace colder and denser gas relative to [C ii]158μ, are instead model dependent, as these lines are strongly affected by the thermodynamic state of the gas and non-equilibrium photoionization effects. For the same reasons, [O i] lines represent an excellent tool to constrain emission models, hence future observations targeting these lines will be crucial.


Sign in / Sign up

Export Citation Format

Share Document