scholarly journals Accretion heated atmospheres of X-ray bursting neutron stars

2018 ◽  
Vol 619 ◽  
pp. A114 ◽  
Author(s):  
V. F. Suleimanov ◽  
J. Poutanen ◽  
K. Werner

Some thermonuclear (type I) X-ray bursts at the neutron star surfaces in low-mass X-ray binaries take place during hard persistent states of the systems. Spectral evolution of these bursts is well described by the atmosphere model of a passively cooling neutron star when the burst luminosity is high enough. The observed spectral evolution deviates from the model predictions when the burst luminosity drops below a critical value of 20–70% of the maximum luminosity. The amplitude of the deviations and the critical luminosity correlate with the persistent luminosity, which leads us to suggest that these deviations are induced by the additional heating of the accreted particles. We present a method for computation of the neutron star atmosphere models heated by accreted particles assuming that their energy is released via Coulomb interactions with electrons. We computed the temperature structures and the emergent spectra of the atmospheres of various chemical compositions and investigate the dependence of the results on the velocity of accreted particles, their temperature and the penetration angle. We show that the heated atmosphere develops two different regions. The upper one is the hot (20–100 keV) corona-like surface layer cooled by Compton scattering, and the deeper, almost isothermal optically thick region with a temperature of a few keV. The emergent spectra correspondingly have two components: a blackbody with the temperature close to that of the isothermal region and a hard Comptonized component (a power law with an exponential decay). Their relative contribution depends on the ratio of the energy dissipation rate of the accreted particles to the intrinsic flux from the neutron star surface. These spectra deviate strongly from those of undisturbed, passively cooling neutron star atmospheres, with the main differences being the presence of a high-energy tail and a strong excess in the low-energy part of the spectrum. They also lack the iron absorption edge, which is visible in the spectra of undisturbed low-luminosity atmospheres with solar chemical composition. Using the computed spectra, we obtained the dependences of the dilution and color-correction factors as functions of relative luminosities for pure helium and solar abundance atmospheres. We show that the helium model atmosphere heated by accretion corresponding to 5% of the Eddington luminosity describes well the late stages of the X-ray bursts in 4U 1820−30.

2020 ◽  
Vol 501 (1) ◽  
pp. 168-178
Author(s):  
Chen Li ◽  
Guobao Zhang ◽  
Mariano Méndez ◽  
Jiancheng Wang ◽  
Ming Lyu

ABSTRACT We have found and analysed 16 multipeaked type-I bursts from the neutron-star low-mass X-ray binary 4U 1636 − 53 with the Rossi X-ray Timing Explorer (RXTE). One of the bursts is a rare quadruple-peaked burst that was not previously reported. All 16 bursts show a multipeaked structure not only in the X-ray light curves but also in the bolometric light curves. Most of the multipeaked bursts appear in observations during the transition from the hard to the soft state in the colour–colour diagram. We find an anticorrelation between the second peak flux and the separation time between two peaks. We also find that in the double-peaked bursts the peak-flux ratio and the temperature of the thermal component in the pre-burst spectra are correlated. This indicates that the double-peaked structure in the light curve of the bursts may be affected by enhanced accretion rate in the disc, or increased temperature of the neutron star.


2018 ◽  
Vol 620 ◽  
pp. L13 ◽  
Author(s):  
A. Rouco Escorial ◽  
J. van den Eijnden ◽  
R. Wijnands

We present our Swift monitoring campaign of the slowly rotating neutron star Be/X-ray transient GX 304–1 (spin period of ∼275 s) when the source was not in outburst. We found that between its type I outbursts, the source recurrently exhibits a slowly decaying low-luminosity state (with luminosities of 1034 − 35 erg s−1). This behaviour is very similar to what has been observed for another slowly rotating system, GRO J1008–57. For that source, this low-luminosity state has been explained in terms of accretion from a non-ionised (“cold”) accretion disc. Because of the many similarities between the two systems, we suggest that GX 304–1 enters a similar accretion regime between its outbursts. The outburst activity of GX 304–1 ceased in 2016. Our continued monitoring campaign shows that the source is in a quasi-stable low-luminosity state (with luminosities a few factors lower than previously seen) for at least one year now. Using our NuSTAR observation in this state, we found pulsations at the spin period, demonstrating that the X-ray emission is due to accretion of matter onto the neutron star surface. If the accretion geometry during this quasi-stable state is the same as during the cold-disc state, then matter indeed reaches the surface (as predicted) during this later state. We discuss our results in the context of the cold-disc accretion model.


1980 ◽  
Vol 58 ◽  
pp. 595-600
Author(s):  
R. Canal ◽  
J. Isern ◽  
J. Labay

Abstract.Mass-accreting carbon-oxygen white dwarfs become thermally and dynamically unstable when they reach high enough central densities. Carbon ignition at the star’s center likely propagates subsonically and, in the case of an initially solid core, leads to collapse if the rate of increase of the core’s mass is sufficiently fast. Recent results indicate, however, that solidification of the core induces carbon-oxygen separation. The central regions are then made of pure oxygen while carbon is rejected to lower-density layers. Carbon ignition happens only after neutronization of the central (oxygen) regions. Collapse to a neutron star is then independent from the rate of mass increase and the only possible restrictions are set by the behaviour of the outer, accreted layers. X-ray sources, pulsars and Type I supernovae are likely outcomes of this process.


Galaxies ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 62
Author(s):  
Haritma Gaur

The synchrotron hump of the high energy peaked blazars generally lies in the 0.1–10 keV range and such sources show extreme flux and spectral variability in X-ray bands. Various spectral studies showed that the X-ray spectra of high energy peaked blazars are curved and better described by the log-parabolic model. The curvature is attributed to the energy dependent statistical acceleration mechanism. In this work, we review the X-ray spectral studies of high energy peaked blazars. It is found that the log-parabolic model well describes the spectra in a wide energy interval around the peak. The log-parabolic model provides the possibility of investigating the correlation between the spectral parameters derived from it. Therefore, we compiled the studies of correlations between the various parameters derived from the log-parabolic model and their implications to describe the variability mechanism of blazars.


2019 ◽  
Vol 489 (1) ◽  
pp. 993-999 ◽  
Author(s):  
I M Monageng ◽  
M J Coe ◽  
J A Kennea ◽  
L J Townsend ◽  
D A H Buckley ◽  
...  

ABSTRACT In this paper we report on the optical and X-ray behaviour of the Be X-ray binary, SXP 91.1, during a recent type I outburst. We monitored the outburst using the Neil Gehrels Swift Observatory. These data were supported by optical data from the Southern African Large Telescope and the Optical Gravitational Lensing Experiment (OGLE) to show the circumstellar disc activity. Matter from this disc accretes on to the neutron star, giving rise to the X-ray outburst as seen in the synchronous evolution of the optical and X-ray light curves. Using data taken with OGLE we show that the circumstellar disc has exhibited stable behaviour over two decades. A positive correlation is seen between the colour and magnitude from the OGLE and massive compact halo object observations, which indicates that the disc is orientated at relatively low-inclination angles. From the OGLE and Swift data, we demonstrate that the system has shown relative phase offsets that have persisted for many years. The spin period derivative is seen to be at maximum spin-up at phases when the mass accretion rate is at maximum. We show that the neutron star in SXP 91.1 is an unusual member of its class in the sense that it has had a consistent spin period derivative over many years, with the average spin-up rate being one of the highest for known Small Magellanic Cloud pulsars. The most recent measurements of the spin-up rate reveal higher values than the global trend, which is attributed to the recent mass accretion event leading to the current outburst.


2004 ◽  
Vol 194 ◽  
pp. 208-208
Author(s):  
J. M. Torrejón ◽  
I. Kreykenbohni ◽  
A. Orr ◽  
L. Titarchuk ◽  
I. Negueruela

We present an analysis of archival RXTE and BeppoSAX data of the X-ray source 4U2206+54. For the first time, high energy data (≥ 30 keV) is analyzed. The data is well described by comptonization models in which seed photons with temperatures between 1.1 keV arid 1.5 keV are comptonized by a hot plasma at 50 keV thereby producing a hard tail which extends up to 100 keV. From luminosity arguments it is shown that the area of the soft photons source must be small (r ≈ 1 km) and that the presence of an accretion disk in this system is unlikely. Here we report on the possible existence of a cyclotron line around 30 keV . The presence of a neutron star in the system is strongly favored by the available data.


2019 ◽  
Vol 490 (2) ◽  
pp. 2228-2240 ◽  
Author(s):  
A J Goodwin ◽  
D K Galloway ◽  
A Heger ◽  
A Cumming ◽  
Z Johnston

ABSTRACT We present a new method of matching observations of Type-I (thermonuclear) X-ray bursts with models, comparing the predictions of a semi-analytic ignition model with X-ray observations of the accretion-powered millisecond pulsar SAX J1808.4–3658 in outburst. We used a Bayesian analysis approach to marginalize over the parameters of interest and determine parameters such as fuel composition, distance/anisotropy factors, neutron star mass, and neutron star radius. Our study includes a treatment of the system inclination effects, inferring that the rotation axis of the system is inclined $\left(69^{+4}_{-2}\right)^\circ$ from the observers line of sight, assuming a flat disc model. This method can be applied to any accreting source that exhibits Type-I X-ray bursts. We find a hydrogen mass fraction of $0.57^{+0.13}_{-0.14}$ and CNO metallicity of $0.013^{+0.006}_{-0.004}$ for the accreted fuel is required by the model to match the observed burst energies, for a distance to the source of $3.3^{+0.3}_{-0.2}\, \mathrm{kpc}$. We infer a neutron star mass of $1.5^{+0.6}_{-0.3}\, \mathrm{M}_{\odot }$ and radius of $11.8^{+1.3}_{-0.9}\, \mathrm{km}$ for a surface gravity of $1.9^{+0.7}_{-0.4}\times 10^{14}\, \mathrm{cm}\, \mathrm{s}^{-2}$ for SAX J1808.4–3658.


2004 ◽  
Vol 194 ◽  
pp. 206-206
Author(s):  
M. Bałucińska-Church ◽  
M. J. Church ◽  
G. Halai ◽  
A. Szostek

The explanation of the strong physical changes clearly taking place in the Z-track class of Low Mass X-ray Binaries has so far not been obtained, and this remains a significant astrophysical problem, without which we cannot claim to understand accretion in LMXB. We have for the first time applied the Birmingham emission model (2,3) to this problem to attempt to obtain a solution from the spectral evolution along the Z-track in the source GX 340+0 observed with Rossi- ХTE. In this model, X-ray emission consists of blackbody from the neutron star, plus Comptonized emission from an extended ADC.


Sign in / Sign up

Export Citation Format

Share Document