scholarly journals Ratio of black hole to galaxy mass of an extremely red dust-obscured galaxy at z = 2.52

2018 ◽  
Vol 620 ◽  
pp. L3 ◽  
Author(s):  
K. Matsuoka ◽  
Y. Toba ◽  
M. Shidatsu ◽  
Y. Ueda ◽  
K. Iwasawa ◽  
...  

We present a near-infrared (NIR) spectrum of WISE J104222.11+164115.3, an extremely red dust-obscured galaxy (DOG), which has been observed with the Long-slit Intermediate Resolution Infrared Spectrograph (LIRIS) on the 4.2m William Hershel Telescope. This object was selected as a hyper-luminous DOG candidate at z ∼ 2 by combining the optical and IR photometric data based on the Sloan Digital Sky Survey (SDSS) and Wide-field Infrared Survey Explorer (WISE), although its redshift had not yet been confirmed. Based on the LIRIS observation, we confirmed its redshift of 2.521 and total IR luminosity of log(LIR/L⊙) = 14.57, which satisfies the criterion for an extremely luminous IR galaxy (ELIRG). Moreover, we indicate that this object seems to have an extremely massive black hole with MBH = 1010.92 M⊙ based on the broad Hα line: the host stellar mass is derived as M⋆ = 1013.55 M⊙ by a fit of the spectral energy distribution. Very recently, it has been reported that this object is an anomalous gravitationally lensed quasar based on near-IR high-resolution imaging data obtained with the Hubble Space Telescope. Its magnification factor has also been estimated with some uncertainty (i.e., μ = 53−122). We investigate the ratio of the black hole to galaxy mass, which is less strongly affected by a lensing magnification factor, instead of the absolute values of the luminosities and masses. We find that the MBH/M⋆ ratio (i.e., 0.0140–0.0204) is significantly higher than the local relation, following a sequence of unobscured quasars instead of obscured objects (e.g., submillimeter galaxies) at the same redshift. Moreover, the LIRIS spectrum shows strongly blueshifted oxygen lines with an outflowing velocity of ∼1100 km s−1, and our Swift X-ray observation also supports that this source is an absorbed AGN with an intrinsic column density of NHint = 4.9 × 1023 cm−2. These results imply that WISE J104222.11+164115.3 is in a blow-out phase at the end of the buried rapid black hole growth.

2020 ◽  
Vol 495 (2) ◽  
pp. 2088-2104
Author(s):  
Jonás Chaves-Montero ◽  
Andrew Hearin

ABSTRACT The spectral energy distribution of a galaxy emerges from the complex interplay of many physical ingredients, including its star formation history (SFH), metallicity evolution, and dust properties. Using galaxpy, a new galaxy spectral prediction tool, and SFHs predicted by the empirical model universemachine and the cosmological hydrodynamical simulation IllustrisTNG, we isolate the influence of SFH on optical and near-infrared colours from 320 to 1080 Å at z = 0. By carrying out a principal component analysis, we show that physically motivated SFH variations modify galaxy colours along a single direction in colour space: the SFH-direction. We find that the projection of a galaxy’s present-day colours on to the SFH-direction is almost completely regulated by the fraction of stellar mass that the galaxy formed over the last billion years. Together with cosmic downsizing, this results in galaxies becoming redder as their host halo mass increases. We additionally study the change in galaxy colours due to variations in metallicity, dust attenuation, and nebular emission lines, finding that these properties vary broad-band colours along distinct directions in colour space relative to the SFH-direction. Finally, we show that the colours of low-redshift Sloan Digital Sky Survey galaxies span an ellipsoid with significant extent along two independent dimensions, and that the SFH-direction is well-aligned with the major axis of this ellipsoid. Our analysis supports the conclusion that variations in SFH are the dominant influence on present-day galaxy colours, and that the nature of this influence is strikingly simple.


2018 ◽  
Vol 619 ◽  
pp. A169 ◽  
Author(s):  
M. Rowan-Robinson ◽  
Lingyu Wang ◽  
Duncan Farrah ◽  
Dimitra Rigopoulou ◽  
Carlotta Gruppioni ◽  
...  

We have used two catalogues, a Herschel catalogue selected at 500 μm (HerMES) and an IRAS catalogue selected at 60 μm (RIFSCz), to contrast the sky at these two wavelengths. Both surveys demonstrate the existence of “extreme” starbursts, with star-formation rates (SFRs) > 5000 M⊙ yr−1. The maximum intrinsic star-formation rate appears to be ~30 000 M⊙ yr−1. The sources with apparent SFR estimates higher than this are in all cases either lensed systems, blazars, or erroneous photometric redshifts. At redshifts between three and five, the time-scale for the Herschel galaxies to make their current mass of stars at their present rate of star formation is ~108 yr, so these galaxies are making a significant fraction of their stars in the current star-formation episode. Using dust mass as a proxy for gas mass, the Herschel galaxies at redshift three to five have gas masses comparable to their mass in stars. Of the 38 extreme starbursts in our Herschel survey for which we have more complete spectral energy distribution (SED) information, 50% show evidence for QSO-like optical emission, or exhibit AGN dust tori in the mid-infrared SEDs. In all cases however the infrared luminosity is dominated by a starburst component. We derive a mean covering factor for AGN dust as a function of redshift and derive black hole masses and black hole accretion rates. There is a universal ratio of black-hole mass to stellar mass in these high redshift systems of ~10−3, driven by the strong period of star-formation and black-hole growth at z = 1−5.


2020 ◽  
Vol 643 ◽  
pp. A97
Author(s):  
O. Miettinen

Context. Physically unassociated background or foreground objects seen towards submillimetre sources are potential contaminants of both the studies of young stellar objects embedded in Galactic dust clumps and multiwavelength counterparts of submillimetre galaxies (SMGs). Aims. We aim to search for and characterise the properties of a potential extragalactic object seen in projection towards a Galactic dust clump. Methods. We employed the near-infrared (3.4 μm and 4.6 μm) and mid-infrared (12 μm and 22 μm) data from the Wide-field Infrared Survey Explorer (WISE) and the submillimetre data from the Planck satellite. Results. We uncovered a source, namely the WISE source J044232.92+322734.9 (hereafter J044232.92), which is detected in the W1–W3 bands of WISE, but undetected at 22 μm (W4), and whose WISE infrared (IR) colours suggest that it is a star-forming galaxy (SFG). This source is seen in projection towards the Planck-detected dust clump PGCC G169.20-8.96, which likely belongs to the Taurus-Auriga cloud complex, at a distance of 140 pc. We used the MAGPHYS+photo-z spectral energy distribution (SED) code to derive the photometric redshift and physical properties of J044232.92. The redshift was derived to be zphot = 1.132−0.165+0.280, while, for example, the stellar mass, IR (8–1000 μm) luminosity, and star formation rate were derived to be M⋆ = 4.6−2.5+4.7 × 1011 M⊙, LIR = 2.8−1.5+5.7 × 1012 L⊙, and SFR = 191−146+580 M⊙ yr−1 (or 281−155+569 M⊙ yr−1 when estimated from the IR luminosity). The derived value of LIR suggests that J044232.92 could be an ultraluminous IR galaxy, and we found that it is consistent with a main sequence SFG at a redshift of 1.132. Conclusions. The estimated physical properties of J044232.92 are comparable to those of SMGs, except that the derived stellar mass of J044232.92 appears somewhat higher (by a factor of 4–5) than the average stellar masses of SMGs. However, the stellar mass difference could just reflect the poorly sampled SED in the ultraviolet, optical, and near-IR regimes. Indeed, the SED of J044232.92 could not be well constrained using the currently available data (WISE only), and hence the derived redshift of the source and its physical properties should be taken as preliminary estimates. Further observations, in particular high-resolution (sub-)millimetre and radio continuum imaging, are needed to better constrain the redshift and physical properties of J044232.92 and to see if the source really is a galaxy seen through a Galactic dust clump, in particular an SMG population member at z ∼ 1.1.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Nanako Kato ◽  
Yoshiki Matsuoka ◽  
Masafusa Onoue ◽  
Shuhei Koyama ◽  
Yoshiki Toba ◽  
...  

Abstract We present the first discovery of dust-reddened quasars (red quasars) in the high-z universe (z > 5.6). This is a result from the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, which is based on the sensitive multi-band optical imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. We identified four red quasar candidates from the 93 spectroscopically confirmed high-z quasars in the SHELLQs sample, based on detections in the Wide-field Infrared Survey Explorer (WISE) data at 3.4 and 4.6 μm (rest-frame ∼5000–6500 Å). The amount of dust reddening was estimated with spectral energy distribution (SED) fits over optical and mid-infrared wavelengths. Two of the four candidates were found to be red quasars with dust reddening of E(B − V) > 0.1. The remaining SHELLQs quasars without individual WISE detections are significantly fainter in the WISE bands and bluer than the red quasars, although we did detect them in the W1 band in a stacked image. We also conducted the same SED fits for high-z optically-luminous quasars, but no red quasar was found. This demonstrates the power of Subaru HSC to discover high-z red quasars, which are fainter than the limiting magnitudes of past surveys in the rest-frame ultraviolet, due to dust extinction.


2006 ◽  
Vol 2 (S238) ◽  
pp. 165-169
Author(s):  
Daniel Proga

AbstractI present results from numerical simulations of gas dynamics outside luminous accretion disks in active galactic nuclei. The gas, gravitationally captured by a super massive black hole, can be driven away by the energy and momentum of the radiation emitted during black hole accretion. Assuming axisymmetry, I study how the mass accretion and outflow rates, and the flow dynamics respond to changes in radiation heating relative to radiation pressure.I find that for a 108M⊙ black hole with the accretion luminosity of 0.6 of the Eddington luminosity the flow settles into a steady state and has two components: (1) an equatorial inflow and (2) a bipolar inflow/outflow with the outflow leaving the system along the disk rotational axis. The inflow is a realization of a Bondi–like accretion flow. The second component is an example of a non-radial accretion flow which becomes an outflow once it is pushed close to the rotational axis where thermal expansion and radiation pressure accelerate it outward.The main result of this preliminary work is that although the above two-component solution is robust, its properties are sensitive to the geometry and spectral energy distribution of the radiation field.


2020 ◽  
Vol 499 (3) ◽  
pp. 4068-4081 ◽  
Author(s):  
Ting-Wen Wang ◽  
Tomotsugu Goto ◽  
Seong Jin Kim ◽  
Tetsuya Hashimoto ◽  
Denis Burgarella ◽  
...  

ABSTRACT In order to understand the interaction between the central black hole and the whole galaxy or their co-evolution history along with cosmic time, a complete census of active galactic nucleus (AGN) is crucial. However, AGNs are often missed in optical, UV, and soft X-ray observations since they could be obscured by gas and dust. A mid-infrared (MIR) survey supported by multiwavelength data is one of the best ways to find obscured AGN activities because it suffers less from extinction. Previous large IR photometric surveys, e.g. Wide field Infrared Survey Explorer and Spitzer, have gaps between the MIR filters. Therefore, star-forming galaxy-AGN diagnostics in the MIR were limited. The AKARI satellite has a unique continuous nine-band filter coverage in the near to MIR wavelengths. In this work, we take advantage of the state-of-the-art spectral energy distribution modelling software, cigale, to find AGNs in MIR. We found 126 AGNs in the North Ecliptic Pole-Wide field with this method. We also investigate the energy released from the AGN as a fraction of the total IR luminosity of a galaxy. We found that the AGN contribution is larger at higher redshifts for a given IR luminosity. With the upcoming deep IR surveys, e.g. JWST, we expect to find more AGNs with our method.


1997 ◽  
Vol 163 ◽  
pp. 725-726
Author(s):  
K.-W. Hodapp ◽  
E. F. Ladd

Stars in the earliest phases of their formation, i.e., those accreting the main component of their final mass, are deeply embedded within dense cores of dust and molecular material. Because of the high line-of-sight extinction and the large amount of circumstellar material, stellar emission is reprocessed by dust into long wavelength radiation, typically in the far-infrared and sub-millimeter bands. Consequently, the youngest sources are strong submillimeter continuum sources, and often undetectable as point sources in the near-infrared and optical. The most deeply embedded of these sources have been labelled “Class 0” sources by André, Ward-Thompson, & Barsony (1994), in an extension of the spectral energy distribution classification scheme first proposed by Adams, Lada, & Shu (1987).


Author(s):  
P K Nayak ◽  
A Subramaniam ◽  
S Subramanian ◽  
S Sahu ◽  
C Mondal ◽  
...  

Abstract We have demonstrated the advantage of combining multi-wavelength observations, from the ultraviolet (UV) to near-infrared, to study Kron 3, a massive star cluster in the Small Magellanic Cloud. We have estimated the radius of the cluster Kron 3 to be 2${_{.}^{\prime}}$0 and for the first time, we report the identification of NUV-bright red clump (RC) stars and the extension of the RC in colour and magnitude in the NUV versus (NUV−optical) colour-magnitude diagram (CMD). We found that extension of the RC is an intrinsic property of the cluster and it is not due to contamination of field stars or differential reddening across the field. We studied the spectral energy distribution of the RC stars, and estimated a small range in temperature ∼5000–5500 K, luminosity ∼60–90 L⊙ and radius ∼8.0–11.0 R⊙ supporting their RC nature. The range of UV magnitudes amongst the RC stars (∼23.3 to 24.8 mag) is likely caused by the combined effects of variable mass loss, variation in initial helium abundance (Yini = 0.23 to 0.28), and a small variation in age (6.5-7.5 Gyr) and metallicity ([Fe/H] = −1.5 to −1.3). Spectroscopic follow-up observations of RC stars in Kron 3 are necessary to confirm the cause of the extended RC.


2018 ◽  
Vol 617 ◽  
pp. L2 ◽  
Author(s):  
A. Müller ◽  
M. Keppler ◽  
Th. Henning ◽  
M. Samland ◽  
G. Chauvin ◽  
...  

Context. The observation of planets in their formation stage is a crucial but very challenging step in understanding when, how, and where planets form. PDS 70 is a young pre-main sequence star surrounded by a transition disk, in the gap of which a planetary-mass companion has recently been discovered. This discovery represents the first robust direct detection of such a young planet, possibly still at the stage of formation. Aims. We aim to characterize the orbital and atmospheric properties of PDS 70 b, which was first identified on May 2015 in the course of the SHINE survey with SPHERE, the extreme adaptive-optics instrument at the VLT. Methods. We obtained new deep SPHERE/IRDIS imaging and SPHERE/IFS spectroscopic observations of PDS 70 b. The astrometric baseline now covers 6 yr, which allowed us to perform an orbital analysis. For the first time, we present spectrophotometry of the young planet which covers almost the entire near-infrared range (0.96–3.8 μm). We use different atmospheric models covering a large parameter space in temperature, log g, chemical composition, and cloud properties to characterize the properties of the atmosphere of PDS 70 b. Results. PDS 70 b is most likely orbiting the star on a circular and disk coplanar orbit at ~22 au inside the gap of the disk. We find a range of models that can describe the spectrophotometric data reasonably well in the temperature range 1000–1600 K and log g no larger than 3.5 dex. The planet radius covers a relatively large range between 1.4 and 3.7 RJ with the larger radii being higher than expected from planet evolution models for the age of the planet of 5.4 Myr. Conclusions. This study provides a comprehensive data set on the orbital motion of PDS 70 b, indicating a circular orbit and a motion coplanar with the disk. The first detailed spectral energy distribution of PDS 70 b indicates a temperature typical of young giant planets. The detailed atmospheric analysis indicates that a circumplanetary disk may contribute to the total planetflux.


Sign in / Sign up

Export Citation Format

Share Document