scholarly journals The first detection of radio recombination lines at cosmological distances

2019 ◽  
Vol 622 ◽  
pp. A7 ◽  
Author(s):  
K. L. Emig ◽  
P. Salas ◽  
F. de Gasperin ◽  
J. B. R. Oonk ◽  
M. C. Toribio ◽  
...  

Context. Recombination lines involving high principal quantum numbers (n ∼ 50 − 1000) populate the radio spectrum in large numbers. Low-frequency (< 1 GHz) observations of radio recombination lines (RRLs) primarily from carbon and hydrogen offer a new, if not unique, way to probe cold, largely atomic gas and warm, ionised gas in other galaxies. Furthermore, RRLs can be used to determine the physical state of the emitting regions, such as temperature and density. These properties make RRLs, potentially, a powerful tool of extragalactic interstellar medium (ISM) physics. At low radio frequencies, it is conceivable to detect RRLs out to cosmological distances when illuminated by a strong radio continuum. However, they are extremely faint (τpeak ∼ 10−3 − 10−4) and have so far eluded detection outside of the local universe. Aims. With observations of the radio quasar 3C 190 (z = 1.1946), we aim to demonstrate that the ISM can be explored out to great distances through low-frequency RRLs. Methods. 3C 190 was observed with the LOw Frequency ARray (LOFAR) and processed using newly developed techniques for spectral analysis. Results. We report the detection of RRLs in the frequency range 112 MHz–163 MHz in the spectrum of 3C 190. Stacking 13 α-transitions with principal quantum numbers n = 266 − 301, a peak 6σ feature of optical depth τpeak = (1.0 ± 0.2)×10−3 and FWHM = 31.2 ± 8.3 km s−1 was found at z = 1.124. This corresponds to a velocity offset of −9965 km s−1 with respect to the systemic redshift of 3C 190. Conclusions. We consider three interpretations of the origin of the RRL emission: an intervening dwarf-like galaxy, an active galactic nucleus (AGN) driven outflow, and the inter-galactic medium. We argue that the recombination lines most likely originate in a dwarf-like galaxy (M ∼ 109 M⊙) along the line of sight, although we cannot rule out an AGN-driven outflow. We do find the RRLs to be inconsistent with an inter-galactic medium origin. With this detection, we have opened up a new way to study the physical properties of cool, diffuse gas out to cosmological distances.

2002 ◽  
Vol 199 ◽  
pp. 295-298
Author(s):  
S.A. Trushkin

We present radio continuum spectra for nearly 200 Galactic supernova remnants (SNRs) from 220 known and included in Green's (1998) catalog. Spectra plotting is an “on—line” procedure of the CATS database http://cats.sao.ru/ and it could plot quite accurate spectra with the thermal plasma free—free absorption in fitting the spectra accounted for: to indicate the presence of extended ionized medium along the line of sight.We did not find considerable correlation between spectral index and Galactic coordinates l, b of SNRs. An analysis of 190 spectra showed that 78 SNRs (40 %) have clear low-frequency turnover caused, apparently, by absorption in the thermal foreground of the Milky Way. The turnover frequency vτ=1 for these SNRs has mean value near 30 MHz do not correlate with the Galactic coordinates. But the frequency has significant correlation with the distance to SNR, defined from ∑ — D relation.


2014 ◽  
Vol 10 (S309) ◽  
pp. 210-213
Author(s):  
I-Ting Ho ◽  

AbstractWe conduct a case study on a normal star-forming galaxy (z=0.05) observed by the SAMI Galaxy Survey and demonstrate the feasibility and potential of using large integral field spectroscopic surveys to investigate the prevalence of galactic-scale outflows in the local Universe. We perform spectral decomposition to separate the different kinematic components overlapping in the line-of-sight direction that causes the skewed line profiles in the integral field data. The three kinematic components present distinctly different line ratios and kinematic properties. We model the line ratios with the shock/photoionization code mappings iv and demonstrate that the different emission line properties are caused by major galactic outflows that introduce shock excitation in addition to photoionization. These results set a benchmark of the type of analysis that can be achieved by the SAMI Galaxy Survey on large numbers of galaxies.


2017 ◽  
Vol 23 (1) ◽  
pp. 50-53
Author(s):  
A.A. Konovalenko ◽  
◽  
S.V. Stepkin ◽  
E.V. Vasilkovskiy ◽  
◽  
...  

2020 ◽  
Vol 500 (3) ◽  
pp. 3213-3239
Author(s):  
Mattia Libralato ◽  
Daniel J Lennon ◽  
Andrea Bellini ◽  
Roeland van der Marel ◽  
Simon J Clark ◽  
...  

ABSTRACT The presence of massive stars (MSs) in the region close to the Galactic Centre (GC) poses several questions about their origin. The harsh environment of the GC favours specific formation scenarios, each of which should imprint characteristic kinematic features on the MSs. We present a 2D kinematic analysis of MSs in a GC region surrounding Sgr A* based on high-precision proper motions obtained with the Hubble Space Telescope. Thanks to a careful data reduction, well-measured bright stars in our proper-motion catalogues have errors better than 0.5 mas yr−1. We discuss the absolute motion of the MSs in the field and their motion relative to Sgr A*, the Arches, and the Quintuplet. For the majority of the MSs, we rule out any distance further than 3–4 kpc from Sgr A* using only kinematic arguments. If their membership to the GC is confirmed, most of the isolated MSs are likely not associated with either the Arches or Quintuplet clusters or Sgr A*. Only a few MSs have proper motions, suggesting that they are likely members of the Arches cluster, in agreement with previous spectroscopic results. Line-of-sight radial velocities and distances are required to shed further light on the origin of most of these massive objects. We also present an analysis of other fast-moving objects in the GC region, finding no clear excess of high-velocity escaping stars. We make our astro-photometric catalogues publicly available.


2018 ◽  
Vol 14 (S344) ◽  
pp. 255-258
Author(s):  
Volker Heesen ◽  
Aritra Basu ◽  
Elias Brinks ◽  
George Heald ◽  
Andrew Fletcher ◽  
...  

AbstractLow-mass dwarf irregular galaxies are subject to outflows, in which cosmic rays may play a very important role; they can be traced via their electron component, the cosmic ray electrons (CRe), in the radio continuum as non-thermal synchrotron emission. With the advent of sensitive low-frequency observations, such as with the Low-Frequency Array (LOFAR), we can trace CRe far away from star formation sites. Together with GHz-observations, such as with the Very Large Array (VLA), we can study spatially resolved radio continuum spectra at matched angular resolution and sensitivity. Here, we present results from our 6-GHz VLA survey of 40 nearby dwarf galaxies and our LOFAR study of the nearby starburst dwarf irregular galaxy IC 10. We explore the relation of RC emission with star formation tracers and study in IC 10 the nature of a low-frequency radio halo, which we find to be the result of a galactic wind.


2021 ◽  
Vol 504 (2) ◽  
pp. 2224-2234
Author(s):  
Nan Li ◽  
Christoph Becker ◽  
Simon Dye

ABSTRACT Measurements of the Hubble–Lemaitre constant from early- and local-Universe observations show a significant discrepancy. In an attempt to understand the origin of this mismatch, independent techniques to measure H0 are required. One such technique, strong lensing time delays, is set to become a leading contender amongst the myriad methods due to forthcoming large strong lens samples. It is therefore critical to understand the systematic effects inherent in this method. In this paper, we quantify the influence of additional structures along the line of sight by adopting realistic light-cones derived from the cosmoDC2 semi-analytical extragalactic catalogue. Using multiple-lens plane ray tracing to create a set of simulated strong lensing systems, we have investigated the impact of line-of-sight structures on time-delay measurements and in turn, on the inferred value of H0. We have also tested the reliability of existing procedures for correcting for line-of-sight effects. We find that if the integrated contribution of the line-of-sight structures is close to a uniform mass sheet, the bias in H0 can be adequately corrected by including a constant external convergence κext in the lens model. However, for realistic line-of-sight structures comprising many galaxies at different redshifts, this simple correction overestimates the bias by an amount that depends linearly on the median external convergence. We therefore conclude that lens modelling must incorporate multiple-lens planes to account for line-of-sight structures for accurate and precise inference of H0.


2013 ◽  
Vol 9 (S303) ◽  
pp. 464-466
Author(s):  
M. Rickert ◽  
F. Yusef-Zadeh ◽  
C. Brogan

AbstractWe analyze a high resolution (114″ × 60″) 74 MHz image of the Galactic center taken with the Very Large Array (VLA). We have identified several absorption and emission features in this region, and we discuss preliminary results of two Galactic center sources: the Sgr D complex (G1.1–0.1) and the Galactic center lobe (GCL).The 74 MHz image displays the thermal and nonthermal components of Sgr D and we argue the Sgr D supernova remnant (SNR) is consistent with an interaction with a nearby molecular cloud and the location of the Sgr D Hii region on the near side of the Galactic center. The image also suggests that the emission from the eastern side of the GCL contains a mixture of both thermal and nonthermal sources, whereas the western side is primarily thermal.


2011 ◽  
Vol 28 (1) ◽  
pp. 46-57 ◽  
Author(s):  
B. Pindor ◽  
J. S. B. Wyithe ◽  
D. A. Mitchell ◽  
S. M. Ord ◽  
R. B. Wayth ◽  
...  

AbstractBright point sources associated with extragalactic active galactic nuclei and radio galaxies are an important foreground for low-frequency radio experiments aimed at detecting the redshifted 21-cm emission from neutral hydrogen during the epoch of reionization. The frequency dependence of the synthesized beam implies that the sidelobes of these sources will move across the field of view as a function of observing frequency, hence frustrating line-of-sight foreground subtraction techniques. We describe a method for subtracting these point sources from dirty maps produced by an instrument such as the MWA. This technique combines matched filters with an iterative centroiding scheme to locate and characterize point sources in the presence of a diffuse background. Simulations show that this technique can improve the dynamic range of epoch-of-reionization maps by 2—3 orders of magnitude.


2015 ◽  
pp. 29-37 ◽  
Author(s):  
D. Onic

In this paper, the integrated continuum radio spectrum of supernova remnant (SNR) W44 was analyzed up to 70 GHz, testing the different emission models that can be responsible for its particular shape. The observations by the Planck space telescope made it possible to analyze the high frequency part of radio emission from SNRs. Although the quality of radio continuum spectrum (a high scatter of data points at same frequencies) prevents us to make definite conclusions, the possibility of spinning dust emission detection towards this remnant is emphasized. In addition, a concave-down feature, due to synchrotron losses, can not be definitely dismissed by the present knowledge of the integrated radio continuum spectrum of this SNR.


Genetics ◽  
1984 ◽  
Vol 107 (4) ◽  
pp. 577-589
Author(s):  
Wyatt W Anderson ◽  
Celeste J Brown

ABSTRACT Recent work has called into question the reality of the rare male mating advantage, pointing out that it could be a statistical artifact of marking flies for behavioral observation or of experimental bias in collecting males. We designed an experiment to test for rare male mating advantage that avoids these sources of bias. Large numbers of males of three Drosophila pseudoobscura karyotypes were allowed to mate with females of one karyotype in population cages. The females were then isolated before multiple mating occurred and their progeny used to diagnose the males that mated them. Populations were studied at five sets of male karyotypic frequencies. The mating success of the male homokaryotypes ST/ST and CH/CH, relative to that of the heterokaryotype ST/CH, was frequency dependent. Both ST/ST and CH/CH males displayed a statistically significant mating advantage at low frequency by comparision with their mating success in the midrange of karyotypic frequencies. Both male homokaryotypes also showed a significantly greater mating success at high homokaryotypic frequency than at intermediate frequencies, which is the same as saying that the heterokaryotype not only failed to show a rare male advantage but actually suffered a mating disadvantage at low frequency. We conclude that rare male mating advantage is not always an experimental or methodological artifact but does occur in laboratory populations of D. pseudoobscura. It may occur for some genotypes and not for others, however, and it may be only one of several forms of frequency-dependent mating behavior operating in a population.


Sign in / Sign up

Export Citation Format

Share Document