scholarly journals Do star clusters form in a completely mass-segregated way?

2019 ◽  
Vol 626 ◽  
pp. A79 ◽  
Author(s):  
Václav Pavlík ◽  
Pavel Kroupa ◽  
Ladislav Šubr

Context. ALMA observations of the Serpens South star-forming region suggest that stellar protoclusters may be completely mass segregated at birth. Independent observations also suggest that embedded clusters form segregated by mass. Aims. As the primordial mass segregation seems to be lost over time, we aim to study on which timescale an initially perfectly mass-segregated star cluster becomes indistinguishable from an initially not mass-segregated cluster. As an example, the Orion Nebula Cluster (ONC) is also discussed. Methods. We used N-body simulations of star clusters with various masses and two different degrees of primordial mass segregation. We analysed their energy redistribution through two-body relaxation to quantify the time when the models agree in terms of mass segregation, which sets in only dynamically in the models that are primordially not mass segregated. A comprehensive cross-matched catalogue combining optical, infrared, and X-ray surveys of ONC members was also compiled and made available. Results. The models evolve to a similar radial distribution of high-mass stars after the core collapse (about half a median two-body relaxation time, trh) and become observationally indistinguishable from the point of view of mass segregation at time τv ≈ 3.3 trh. In the case of the ONC, using the distribution of high-mass stars, we may not rule out either evolutionary scenario (regardless of whether they are initially mass segregated). When we account for extinction and elongation of the ONC, as reported elsewhere, an initially perfectly mass-segregated state seems to be more consistent with the observed cluster.

2019 ◽  
Vol 871 (1) ◽  
pp. 122 ◽  
Author(s):  
P. Johns Mulia ◽  
R. Chandar ◽  
B. Rangelov

2020 ◽  
Vol 494 (1) ◽  
pp. 941-957 ◽  
Author(s):  
Peter Senchyna ◽  
Daniel P Stark ◽  
Jordan Mirocha ◽  
Amy E Reines ◽  
Stéphane Charlot ◽  
...  

ABSTRACT Despite significant progress both observationally and theoretically, the origin of high-ionization nebular He ii emission in galaxies dominated by stellar photoionization remains unclear. Accretion-powered radiation from high-mass X-ray binaries (HMXBs) is still one of the leading proposed explanations for the missing He+-ionizing photons, but this scenario has yet to be conclusively tested. In this paper, we present nebular line predictions from a grid of photoionization models with input spectral energy distributions containing the joint contribution of both stellar atmospheres and a multicolour disc model for HMXBs. This grid demonstrates that HMXBs are inefficient producers of the photons necessary to power He ii, and can only boost this line substantially in galaxies with HMXB populations large enough to power X-ray luminosities of 1042 erg s−1 per unit star formation rate (SFR). To test this, we assemble a sample of 11 low-redshift star-forming galaxies with high-quality constraints on both X-ray emission from Chandra and He ii emission from deep optical spectra, including new observations with the MMT. These data reveal that the HMXB populations of these nearby systems are insufficient to account for the observed He ii strengths, with typical X-ray luminosities or upper limits thereon of only 1040–1041 erg s−1 per SFR. This indicates that HMXBs are not the dominant source of He+ ionization in these metal-poor star-forming galaxies. We suggest that the solution may instead reside in revisions to stellar wind predictions, softer X-ray sources, or very hot products of binary evolution at low metallicity.


2018 ◽  
Vol 14 (S346) ◽  
pp. 417-425 ◽  
Author(s):  
Jakub Klencki ◽  
Gijs Nelemans

AbstractX-ray binaries with black hole (BH) accretors and massive star donors at short orbital periods of a few days can evolve into close binary BH (BBH) systems that merge within the Hubble time. From an observational point of view, upon the Roche-lobe overflow such systems will most likely appear as ultra-luminous X-ray sources (ULXs). To study this connection, we compute the mass transfer phase in systems with BH accretors and massive star donors (M > 15 Mʘ) at various orbital separations and metallicities. In the case of core-hydrogen and core-helium burning donors (cases A and C of mass transfer) we find the typical duration of super-Eddington mass transfer of up to 106 and 105 yr, with rates of 10−6 and 10−5Mʘ yr-1, respectively. Given that roughly 0.5 ULXs are found per unit of star formation rate, we estimate the rate of BBH mergers from stable mass transfer evolution to be at most 10 Gpc−3 yr−1.


2018 ◽  
Vol 14 (S346) ◽  
pp. 332-336
Author(s):  
M. Celeste Artale ◽  
Nicola Giacobbo ◽  
Michela Mapelli ◽  
Paolo Esposito

AbstractThe high mass X-ray binaries (HMXBs) provide an exciting framework to investigate the evolution of massive stars and the processes behind binary evolution. HMXBs have shown to be good tracers of recent star formation in galaxies and might be important feedback sources at early stages of the Universe. Furthermore, HMXBs are likely the progenitors of gravitational wave sources (BH–BH or BH–NS binaries that may merge producing gravitational waves). In this work, we investigate the nature and properties of HMXB population in star-forming galaxies. We combine the results from the population synthesis model MOBSE (Giacobbo & Mapelli 2018a) together with galaxy catalogs from EAGLE simulation (Schaye et al. 2015). Therefore, this method describes the HMXBs within their host galaxies in a self-consistent way. We compute the X-ray luminosity function (XLF) of HMXBs in star-forming galaxies, showing that this methodology matches the main features of the observed XLF.


Galaxies ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 88 ◽  
Author(s):  
Paul A. Crowther

A review of the properties of the Tarantula Nebula (30 Doradus) in the Large Magellanic Cloud is presented, primarily from the perspective of its massive star content. The proximity of the Tarantula and its accessibility to X-ray through radio observations permit it to serve as a Rosetta Stone amongst extragalactic supergiant HII regions since one can consider both its integrated characteristics and the individual properties of individual massive stars. Recent surveys of its high mass stellar content, notably the VLT FLAMES Tarantula Survey (VFTS), are reviewed, together with VLT/MUSE observations of the central ionizing region NGC 2070 and HST/STIS spectroscopy of the young dense cluster R136, provide a near complete Hertzsprung-Russell diagram of the region, and cumulative ionizing output. Several high mass binaries are highlighted, some of which have been identified from a recent X-ray survey. Brief comparisons with the stellar content of giant HII regions in the Milky Way (NGC 3372) and Small Magellanic Cloud (NGC 346) are also made, together with Green Pea galaxies and star forming knots in high-z galaxies. Finally, the prospect of studying massive stars in metal poor galaxies is evaluated.


2004 ◽  
Vol 194 ◽  
pp. 3-6
Author(s):  
Andrea H. Prestwich

AbstractChandra and XMM-Newton are revolutionizing our understanding of compact binaries in external galaxies, allowing us to study sources in detail in Local Group Galaxies and study populations in more distant systems. In M31 the X-ray luminosity function depends on the local stellar population in the sense that areas with active star formation have more high luminosity sources, and a higher overall source density (Kong. Di Stefano. Garcia, & Greiner 2003). This result is also true in galaxies outside the Local Group; starburst galaxies have flatter X-ray luminosity functions than do spiral galaxies which are in turn flatter than elliptical galaxies. These observational results suggest that the high end of the luminosity function in star forming regions is dominated by short-lived high mass X-ray binaries.In Chandra Cycle 2 we started a Large Project to survey a sample of 11 nearby (< 10Mpc) face-on spiral galaxies. We find that sources can be approximately classified on the basis of their X-ray color into low mass X-ray binaries, high mass X-ray binaries and supersoft sources. There is an especially interesting class of source that has X-ray colors softer (“redder”) than a typical low mass X-ray binary source, but not so extreme as supersoft sources. Most of these are probably X-ray bright supernova remnants, but some may be a new type of black hole accretor. Finally, when we construct a luminosity function of sources selecting only sources with low mass X-ray binary colors (removing soft sources) we find that there is a dip or break probably associated with the Eddington luminosity for a neutron star.


Author(s):  
William J Henney

Abstract Broad Raman-scattered wings of hydrogen lines can be used to map neutral gas illuminated by high-mass stars in star forming regions. Raman scattering transforms far-ultraviolet starlight from the wings of the Lyβ line (1022Å to 1029Å) to red visual light in the wings of the Hα line (6400AA to 6700Å). Analysis of spatially resolved spectra of the Orion Bar and other regions in the Orion Nebula shows that this process occurs in the neutral photo-dissociation region between the ionization front and dissociation front. The inner Raman wings are optically thick and allow the neutral hydrogen density to be determined, implying n(H0) ≈ 105 cm−3 for the Orion Bar. Far-ultraviolet resonance lines of neutral oxygen imprint their absorption onto the stellar continuum as it passes through the ionization front, producing characteristic absorption lines at 6633Å and 6664Å with widths of order 2Å. This is a unique signature of Raman scattering, which allows it to be easily distinguished from other processes that might produce broad Hα wings, such as electron scattering or high-velocity outflows.


2005 ◽  
Vol 1 (S227) ◽  
pp. 297-302 ◽  
Author(s):  
L. K. Townsley ◽  
P. S. Broos ◽  
E. D. Feigelson ◽  
G. P. Garmire

2018 ◽  
Vol 14 (S346) ◽  
pp. 316-321
Author(s):  
Vallia Antoniou ◽  
Andreas Zezas ◽  
Jeremy J. Drake ◽  
Carles Badenes ◽  
Frank Haberl ◽  
...  

AbstractNearby star-forming galaxies offer a unique environment to study the populations of young (<100 Myr) accreting binaries. These systems are tracers of past populations of massive stars that heavily affect their immediate environment and parent galaxies. Using a Chandra X-ray Visionary program, we investigate the young neutron-star binary population in the low metallicity of the Small Magellanic Cloud (SMC) by reaching quiescent X-ray luminosity levels (~few times 1032 erg/s). We present the first measurement of the formation efficiency of high-mass X-ray binaries (HMXBs) as a function of the age of their parent stellar populations by using 3 indicators: the number ratio of HMXBs to OB stars, to the SFR, and to the stellar mass produced during the specific star-formation burst they are associated with. In all cases, we find that the HMXB formation efficiency increases as a function of time up to ~40–60 Myr, and then gradually decreases.


Sign in / Sign up

Export Citation Format

Share Document