scholarly journals X-ray emission in the enigmatic CVSO 30 system

2019 ◽  
Vol 629 ◽  
pp. A5 ◽  
Author(s):  
S. Czesla ◽  
P. C. Schneider ◽  
M. Salz ◽  
T. Klocová ◽  
T. O. B. Schmidt ◽  
...  

CVSO 30 is a young, active, weak-line T Tauri star; it possibly hosts the only known planetary system with both a transiting hot-Jupiter and a cold-Jupiter candidate (CVSO 30 b and CVSO 30 c). We analyzed archival ROSAT, Chandra, and XMM-Newton data to study the coronal emission in the system. According to our modeling, CVSO 30 shows a quiescent X-ray luminosity of ≈8 × 1029 erg s−1. The X-ray absorbing column is consistent with interstellar absorption. XMM-Newton observed a flare, during which a transit of the candidate CVSO 30 b was expected, but no significant transit-induced variation in the X-ray flux is detectable. While the hot-Jupiter candidate CVSO 30 b has continuously been undergoing mass loss powered by the high-energy irradiation, we conclude that its evaporation lifetime is considerably longer than the estimated stellar age of 2.6 Myr.

2020 ◽  
Vol 500 (4) ◽  
pp. 4560-4572
Author(s):  
K Poppenhaeger ◽  
L Ketzer ◽  
M Mallonn

ABSTRACT Planets around young stars are thought to undergo atmospheric evaporation due to the high magnetic activity of the host stars. Here we report on X-ray observations of V1298 Tau, a young star with four transiting exoplanets. We use X-ray observations of the host star with Chandra and ROSAT to measure the current high-energy irradiation level of the planets and employ a model for the stellar activity evolution together with exoplanetary mass-loss to estimate the possible evolution of the planets. We find that V1298 Tau is X-ray bright with log LX [erg s−1] = 30.1 and has a mean coronal temperature of ≈9 MK. This places the star amongst the more X-ray luminous ones at this stellar age. We estimate the radiation-driven mass-loss of the exoplanets and find that it depends sensitively on the possible evolutionary spin-down tracks of the star as well as on the current planetary densities. Assuming the planets are of low density due to their youth, we find that the innermost two planets can lose significant parts of their gaseous envelopes and could be evaporated down to their rocky cores depending on the stellar spin evolution. However, if the planets are heavier and follow the mass–radius relation of older planets, then even in the highest XUV irradiation scenario none of the planets is expected to cross the radius gap into the rocky regime until the system reaches an age of 5 Gyr.


2019 ◽  
Vol 489 (2) ◽  
pp. 1995-2013 ◽  
Author(s):  
Taylor J Bell ◽  
Michael Zhang ◽  
Patricio E Cubillos ◽  
Lisa Dang ◽  
Luca Fossati ◽  
...  

ABSTRACT The exoplanet WASP-12b is the prototype for the emerging class of ultrahot, Jupiter-mass exoplanets. Past models have predicted – and near-ultraviolet observations have shown – that this planet is losing mass. We present an analysis of two sets of 3.6 and 4.5 $\mu \rm{m}$Spitzer phase curve observations of the system which show clear evidence of infrared radiation from gas stripped from the planet, and the gas appears to be flowing directly toward or away from the host star. This accretion signature is only seen at 4.5 $\mu \rm{m}$, not at 3.6 $\mu \rm{m}$, which is indicative either of CO emission at the longer wavelength or blackbody emission from cool, ≲600 K gas. It is unclear why WASP-12b is the only ultrahot Jupiter to exhibit this mass-loss signature, but perhaps WASP-12b’s orbit is decaying as some have claimed, while the orbits of other exoplanets may be more stable; alternatively, the high-energy irradiation from WASP-12A may be stronger than the other host stars. We also find evidence for phase offset variability at the level of 6.4σ (46.2°) at 3.6 $\mu \rm{m}$.


2019 ◽  
Vol 623 ◽  
pp. A67 ◽  
Author(s):  
I. Pillitteri ◽  
S. Sciortino ◽  
F. Reale ◽  
G. Micela ◽  
C. Argiroffi ◽  
...  

X-ray emission is a characteristic feature of young stellar objects (YSOs) and the result of the interplay between rotation, magnetism, and accretion. For this reason high energy phenomena are key elements to understand the process of star formation, the evolution of their circumstellar disks, and eventually the formation of planets. We investigated the X-ray characteristics of the Class I YSO Elias 29 with joint XMM-Newton and NuSTAR observations of total duration 300 ks and 450 ks, respectively. These are the first observations of a very young (<1 Myr) stellar object in a band encompassing simultaneously both soft and hard X-rays (0.3 − 10 keV in XMM-Newton and ≈3 − 80 keV in NuSTAR). The quiescent spectrum is well described by one thermal component at ∼4.2 keV absorbed by NH ∼ 5.5  ×  1022 cm−2. In addition to the hot Fe complex at 6.7 keV, we observed fluorescent emission from Fe at ∼6.4 keV, confirming the previous findings. The line at 6.4 keV is detected during quiescent and flaring states and its flux is variable. The equivalent width is found varying in the range ≈0.15 − 0.5 keV. These values make unrealistic a simple model with a centrally illuminated disk and suggest a role of the cavity containing Elias 29 and possible reverberation processes that could occur in it. We observed two flares that have durations of 20 ks and 50 ks, respectively, and we observed the first flare with both XMM-Newton and NuSTAR. For this flare, we used its peak temperature and timing as diagnostics to infer a loop size of about 1 − 2 R⊙ in length, which is about 20%–30% of the stellar radius. This implies a relatively compact structure. We systematically observed an increase in NH of a factor five during the flares. This behavior has been observed during flares previously detected in Elias 29 with XMM-Newton and ASCA. The phenomenon suggests that the flaring regions could be buried under the accretion streams and at high stellar latitudes because the X-rays from flares pass through gas denser than the gas along the line of sight of the quiescent corona. In a different scenario, a contribution from scattered soft photons to the primary coronal emission could mimic a shallower NH in the quiescent spectrum. In the spectrum of the full NuSTAR exposure, we detect hard X-ray emission in the band ≈20 − 80 keV which is in excess with respect to the thermal emission and that is significant at a level of ≥2σ. We speculate that the hard X-ray emission could be due to a population of energetic electrons accelerated by the magnetic field along the accretion streams. These particles, along with X-ray photons with E >  7.11 keV, could be responsible for pumping up the Fe fluorescence when hitting cold Fe in the circumstellar disk.


2010 ◽  
Vol 6 (S275) ◽  
pp. 404-405
Author(s):  
María V. del Valle ◽  
Gustavo E. Romero

AbstractT Tauri stars are low mass, pre-main sequence stars. These objects are surrounded by an accretion disk and present strong magnetic activity. T Tauri stars are copious emitters of X-ray emission which belong to powerful magnetic reconnection events. Strong magnetospheric shocks are likely outcome of massive reconnection. Such shocks can accelerate particles up to relativistic energies through Fermi mechanism. We present a model for the high-energy radiation produced in the environment of T Tauri stars. We aim at determining whether this emission is detectable. If so, the T Tauri stars should be very nearby.


2018 ◽  
Vol 618 ◽  
pp. A55 ◽  
Author(s):  
P. C. Schneider ◽  
H. M. Günther ◽  
J. Robrade ◽  
J. H. M. M. Schmitt ◽  
M. Güdel

Classical T Tauri stars (CTTSs) accrete matter from the inner edge of their surrounding circumstellar disks. The impact of the accretion material on the stellar atmosphere results in a strong shock, which causes emission from the X-ray to the near-infrared (NIR) domain. Shock velocities of several 100 km s−1 imply that the immediate post shock plasma emits mainly in X-rays. Indeed, two X-ray diagnostics, the so-called soft excess and the high densities observed in He-like triplets, differentiate CTTSs from their non-accreting siblings. However, accretion shock properties derived from X-ray diagnostics often contradict established ultraviolet (UV)–NIR accretion tracers and a physical model simultaneously explaining both, X-ray and UV–NIR accretion tracers, is not yet available. We present new XMM-Newton and Chandra grating observations of the CTTS T Tauri combined with UV and optical data. During all epochs, the soft excess is large and the densities derived from the O VII and Ne IX He-like triplets are compatible with coronal densities. This confirms that the soft X-ray emission cannot originate in accretion funnels that carry the bulk of the accretion rate despite T Tauri’s large soft excess. Instead, we propose a model of radially density stratified accretion columns to explain the density diagnostics and the soft excess. In addition, accretion rate and X-ray luminosity are inversely correlated in T Tauri over several epochs. Such an anti-correlation has been observed in samples of stars. Hence the process causing it must be intrinsic to the accretion process, and we speculate that the stellar magnetic field configuration on the visible hemisphere affects both the accretion rate and the coronal emission, eventually causing the observed anti-correlation.


2019 ◽  
Vol 491 (1) ◽  
pp. L56-L60 ◽  
Author(s):  
Simon R G Joyce ◽  
John P Pye ◽  
Jonathan D Nichols ◽  
Kim L Page ◽  
Richard Alexander ◽  
...  

ABSTRACT PDS 70 is a ∼5-Myr-old star with a gas and dust disc in which several protoplanets have been discovered. We present the first ultraviolet (UV) detection of the system along with X-ray observations taken with the Neil Gehrels Swift Observatory satellite. PDS 70 has an X-ray flux of 3.4 × 10−13 erg cm−2 s−1 in the 0.3–10.0 keV range, and UV flux (U band) of 3.5 × 10−13 erg cm−2 s−1 . At the distance of 113.4 pc determined from Gaia Data Release 2, this gives luminosities of 5.2 × 1029 and 5.4 × 1029 erg s−1, respectively. The X-ray luminosity is consistent with coronal emission from a rapidly rotating star close to the log $\frac{L_{\mathrm{X}}}{L_{\mathrm{bol}}} \sim -3$ saturation limit. We find the UV luminosity is much lower than would be expected if the star were still accreting disc material and suggest that the observed UV emission is coronal in origin.


1981 ◽  
Vol 93 ◽  
pp. 85-97
Author(s):  
G.S. Bisnovatyi-Kogan

The problems of the stellar evolution to the main sequence are reviewed, taking into account the effects of mass loss, rotation and binarity. Properties of T Tauri stars are discussed which are connected with the recent observations of these stars in ultraviolet and X-ray regions. FU Ori phenomen is considered briefly.


2015 ◽  
Vol 576 ◽  
pp. A42 ◽  
Author(s):  
M. Salz ◽  
P. C. Schneider ◽  
S. Czesla ◽  
J. H. M. M. Schmitt

2012 ◽  
Vol 727-728 ◽  
pp. 799-803 ◽  
Author(s):  
Ricardo F. Cabral ◽  
Marcelo Henrique Prado da Silva ◽  
Jose B. de Campos ◽  
Eduardo Sousa Lima

Al2O3-Nb2O5 has been widely explored as one of the most used material for sintering mixing in the literature, due to its excellent hardness properties, used in armor. In this study, Al2O3-Nb2O5 and Y2O3-Nb2O5 powders were prepared, with 50% in mole fraction of each oxide. The mixtures were subjected to high energy milling in an eccentric ball mill for 3 h, dried and sieved in a sieve vibrator. The green bodies were compacted at 70 MPa and sintered from 1250 to 1650 °C for 3 h, at 100 °C steps. The materials were characterized by quantitative X-Ray diffraction (XRD) using Rietveld method and by mass loss. The Al2O3-Nb2O5 mixtures experienced a weight loss of 84% at sintering temperatures of 1550 and 1650 °C.


Sign in / Sign up

Export Citation Format

Share Document