scholarly journals Thermal evolution of Uranus and Neptune

2019 ◽  
Vol 632 ◽  
pp. A70 ◽  
Author(s):  
Ludwig Scheibe ◽  
Nadine Nettelmann ◽  
Ronald Redmer

The brightness of Neptune is often found to be in accordance with an adiabatic interior, while the low luminosity of Uranus challenges this assumption. Here we apply revised equation of state data of hydrogen, helium, and water and compute the thermal evolution of Uranus and Neptune assuming an adiabatic interior. For this purpose, we have developed a new planetary model and evolution code. We investigate the influence of albedo, solar energy influx, and equations of state of H and He, and water on the cooling time. Our cooling times of about τU = 5.1 × 109 yr for Uranus and τN = 3.7 × 109 yr for Neptune bracket the known age of the planets of 4.56 × 109 yr implying that neither planet’s present-day luminosity can be explained by adiabatic cooling. We also find that uncertainties on input parameters such as the level of irradiation matter generally more for Uranus than for Neptune. Our results suggest that in contrast to common assumptions, neither planet is fully adiabatic in the deeper interior.

Author(s):  
Wolfgang Holzapfel

AbstractVarious approaches for the representation of equation of state data for solids under strong compression are discussed. The theoretical background for reasonable extrapolations to higher pressures and higher as well as lower temperatures is described. The distinction between ideal, regular, and anomalous behaviour allows to gain deeper insight into the electronic changes occurring in various solids under strong compression. The discussion of experimental data for various regular solids leads finally to an estimate of the accuracy obtained in the present realisation of a practical pressure scale based on equation of state measurements.


Author(s):  
Natalia Andrulionis ◽  
Natalia Andrulionis ◽  
Ivan Zavialov ◽  
Ivan Zavialov ◽  
Elena Kovaleva ◽  
...  

This article presents a new method of laboratory density determination and construction equations of state for marine waters with various ionic compositions and salinities was developed. The validation of the method was performed using the Ocean Standard Seawater and the UNESCO thermodynamic equation of state (EOS-80). Density measurements of water samples from the Aral Sea, the Black Sea and the Issyk-Kul Lake were performed using a high-precision laboratory density meter. The obtained results were compared with the density values calculated for the considered water samples by the EOS-80 equation. It was shown that difference in ionic composition between Standard Seawater and the considered water bodies results in significant inaccuracies in determination of water density using the EOS-80 equation. Basing on the laboratory measurements of density under various salinity and temperature values we constructed a new equation of state for the Aral Sea and the Black Sea water samples and estimated errors for their coefficients.


1984 ◽  
Vol 49 (5) ◽  
pp. 1116-1121
Author(s):  
Josef P. Novák ◽  
Jaroslav Matouš ◽  
Petr Pick ◽  
Jiří Pick

Published data on the solubility of water in compressed gases were employed for calculating the interaction coefficients kij in the Redlich-Kwong-Soave equations of state for binary systems of water with argon, nitrogen, CO2, N2O, CH4, C2H6, or C2H4. With these coefficients, the estimate of the solubility of water in these gases has been improved by more than one order.


2021 ◽  
Vol 23 (3) ◽  
Author(s):  
Peter Korn

AbstractWe consider the hydrostatic Boussinesq equations of global ocean dynamics, also known as the “primitive equations”, coupled to advection–diffusion equations for temperature and salt. The system of equations is closed by an equation of state that expresses density as a function of temperature, salinity and pressure. The equation of state TEOS-10, the official description of seawater and ice properties in marine science of the Intergovernmental Oceanographic Commission, is the most accurate equations of state with respect to ocean observation and rests on the firm theoretical foundation of the Gibbs formalism of thermodynamics. We study several specifications of the TEOS-10 equation of state that comply with the assumption underlying the primitive equations. These equations of state take the form of high-order polynomials or rational functions of temperature, salinity and pressure. The ocean primitive equations with a nonlinear equation of state describe richer dynamical phenomena than the system with a linear equation of state. We prove well-posedness for the ocean primitive equations with nonlinear thermodynamics in the Sobolev space $${{\mathcal {H}}^{1}}$$ H 1 . The proof rests upon the fundamental work of Cao and Titi (Ann. Math. 166:245–267, 2007) and also on the results of Kukavica and Ziane (Nonlinearity 20:2739–2753, 2007). Alternative and older nonlinear equations of state are also considered. Our results narrow the gap between the mathematical analysis of the ocean primitive equations and the equations underlying numerical ocean models used in ocean and climate science.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Lütgert ◽  
J. Vorberger ◽  
N. J. Hartley ◽  
K. Voigt ◽  
M. Rödel ◽  
...  

AbstractWe present structure and equation of state (EOS) measurements of biaxially orientated polyethylene terephthalate (PET, $$({\hbox {C}}_{10} {\hbox {H}}_8 {\hbox {O}}_4)_n$$ ( C 10 H 8 O 4 ) n , also called mylar) shock-compressed to ($$155 \pm 20$$ 155 ± 20 ) GPa and ($$6000 \pm 1000$$ 6000 ± 1000 ) K using in situ X-ray diffraction, Doppler velocimetry, and optical pyrometry. Comparing to density functional theory molecular dynamics (DFT-MD) simulations, we find a highly correlated liquid at conditions differing from predictions by some equations of state tables, which underlines the influence of complex chemical interactions in this regime. EOS calculations from ab initio DFT-MD simulations and shock Hugoniot measurements of density, pressure and temperature confirm the discrepancy to these tables and present an experimentally benchmarked correction to the description of PET as an exemplary material to represent the mixture of light elements at planetary interior conditions.


2017 ◽  
Vol 26 (04) ◽  
pp. 1750015 ◽  
Author(s):  
Yeunhwan Lim ◽  
Chang Ho Hyun ◽  
Chang-Hwan Lee

In this paper, we investigate the cooling of neutron stars with relativistic and nonrelativistic models of dense nuclear matter. We focus on the effects of uncertainties originated from the nuclear models, the composition of elements in the envelope region, and the formation of superfluidity in the core and the crust of neutron stars. Discovery of [Formula: see text] neutron stars PSR J1614−2230 and PSR J0343[Formula: see text]0432 has triggered the revival of stiff nuclear equation of state at high densities. In the meantime, observation of a neutron star in Cassiopeia A for more than 10 years has provided us with very accurate data for the thermal evolution of neutron stars. Both mass and temperature of neutron stars depend critically on the equation of state of nuclear matter, so we first search for nuclear models that satisfy the constraints from mass and temperature simultaneously within a reasonable range. With selected models, we explore the effects of element composition in the envelope region, and the existence of superfluidity in the core and the crust of neutron stars. Due to uncertainty in the composition of particles in the envelope region, we obtain a range of cooling curves that can cover substantial region of observation data.


1974 ◽  
Vol 27 (3) ◽  
pp. 647 ◽  
Author(s):  
DV Fenby ◽  
NF Pasco

There has recently been a revival of interest in theories of liquid mixtures based on analytic equations of state for pure fluids. We have shown that the method used to determine the parameters of the pure-liquid equation of state has a significant effect on the excess thermodynamic properties obtained from such theories.


2019 ◽  
Vol 44 (2) ◽  
pp. 168-188
Author(s):  
Shaban G Gouda ◽  
Zakia Hussein ◽  
Shuai Luo ◽  
Qiaoxia Yuan

Utilizing solar energy requires accurate information about global solar radiation (GSR), which is critical for designers and manufacturers of solar energy systems and equipment. This study aims to examine the literature gaps by evaluating recent predictive models and categorizing them into various groups depending on the input parameters, and comprehensively collect the methods for classifying China into solar zones. The selected groups of models include those that use sunshine duration, temperature, dew-point temperature, precipitation, fog, cloud cover, day of the year, and different meteorological parameters (complex models). 220 empirical models are analyzed for estimating the GSR on a horizontal surface in China. Additionally, the most accurate models from the literature are summarized for 115 locations in China and are distributed into the above categories with the corresponding solar zone; the ideal models from each category and each solar zone are identified. Comments on two important temperature-based models that are presented in this work can help the researchers and readers to be unconfused when reading the literature of these models and cite them in a correct method in future studies. Machine learning techniques exhibit performance GSR estimation better than empirical models; however, the computational cost and complexity should be considered at choosing and applying these techniques. The models and model categories in this study, according to the key input parameters at the corresponding location and solar zone, are helpful to researchers as well as to designers and engineers of solar energy systems and equipment.


Sign in / Sign up

Export Citation Format

Share Document