scholarly journals HCN-to-HNC intensity ratio: a new chemical thermometer for the molecular ISM

2020 ◽  
Vol 635 ◽  
pp. A4 ◽  
Author(s):  
A. Hacar ◽  
A. D. Bosman ◽  
E. F. van Dishoeck

Context. The gas kinetic temperature (TK) determines the physical and chemical evolution of the interstellar medium (ISM). However, obtaining reliable TK estimates usually requires expensive observations including the combination of multi-line analysis and dedicated radiative transfer calculations. Aims. This work explores the use of HCN and HNC observations, and particularly the I(HCN)-to-I(HNC) intensity ratio (I(HCN)/I(HNC)) of their J = 1–0 lines, as direct probe of the gas kinetic temperature in the molecular ISM. Methods. We obtained a new set of large-scale observations of the HCN and HNC (1–0) lines throughout the Integral Shape Filament (ISF) in Orion. In combination with ancillary gas and dust temperature measurements, we find a systematic temperature dependence of the observed I(HCN)-to-I(HNC) intensity ratio throughout our maps. Additional comparisons with chemical models demonstrate that these observed I(HCN)/I(HNC) variations are driven by the effective destruction and isomerization mechanisms of HNC under low-energy barriers. Results. The observed variations of I(HCN)/I(HNC) with TK can be described with a two-part linear function. This empirical calibration is then used to create a temperature map of the entire ISF. Comparisons with similar dust temperature measurements in this cloud, as well as in other regions and galactic surveys, validate this simple technique for obtaining direct estimates of the gas kinetic temperature in a wide range of physical conditions and scales with an optimal working range between 15 K ≲ TK ≤ 40 K. Conclusions. Both observations and models demonstrate the strong sensitivity of the I(HCN)/I(HNC) ratio to the gas kinetic temperature. Since these lines are easily obtained in observations of local and extragalactic sources, our results highlight the potential use of this observable as new chemical thermometer for the ISM.

1980 ◽  
Vol 87 ◽  
pp. 127-127
Author(s):  
J. Köppen ◽  
W. H. Kegel

We have investigated under which physical conditions (kinetic temperature, H2 density, CO column density) the CO molecule shows suprathermal excitation and population inversion. The computations are based on a model in which the excitation is basically due to collisions with H2 molecules. The collision cross-sections were taken from Green and Thaddeus (1976). The radiative transport in the molecular lines is treated in an on-the-spot approximation (see e.g. Kegel 1979)J = S(1 - e-τ) + Ibge-τin order to keep the computing time low enough to permit the investigation of a wide range of parameters. Our approximation of the radiative transfer is mathematically equivalent to a formalism involving an escape probability β = e-τ. This escape probability arises from the fact that the radiative transfer in the line wings is neglected.


2020 ◽  
Vol 498 (1) ◽  
pp. 276-291
Author(s):  
Beatrice M Kulterer ◽  
Maria N Drozdovskaya ◽  
Audrey Coutens ◽  
Sébastien Manigand ◽  
Gwendoline Stéphan

ABSTRACT Physicochemical models can be powerful tools to trace the chemical evolution of a protostellar system and allow to constrain its physical conditions at formation. The aim of this work is to assess whether source-tailored modelling is needed to explain the observed molecular abundances around young, low-mass protostars or if, and to what extent, generic models can improve our understanding of the chemistry in the earliest stages of star formation. The physical conditions and the abundances of simple, most abundant molecules based on three models are compared. After establishing the discrepancies between the calculated chemical output, the calculations are redone with the same chemical model for all three sets of physical input parameters. With the differences arising from the chemical models eliminated, the output is compared based on the influence of the physical model. Results suggest that the impact of the chemical model is small compared to the influence of the physical conditions, with considered time-scales having the most drastic effect. Source-tailored models may be simpler by design; however, likely do not sufficiently constrain the physical and chemical parameters within the global picture of star-forming regions. Generic models with more comprehensive physics may not provide the optimal match to observations of a particular protostellar system, but allow a source to be studied in perspective of other star-forming regions.


An overview of the images obtained with the A.S. & E. X-ray telescope on Skylab shows the low corona to be highly structured. The plasma is distributed in closed loops shaped by the magnetic field with sizes ranging from the smallest resolvable structures of a few thousand kilometres to loops that reach halfway across the solar disk. Relatively high-temperature and dense plasma loops overlay active regions; large-scale interconnections link active regions to their surrounding fields and in some cases to other active regions. The large-scale loops, which cover most of the Sun outside of active regions, appear to be related to old active regions whose magnetic fields have spread out over the course of several solar rotations. Often at the poles and occasionally on the disk, large regions display radial field configurations (coronal holes) from which the plasma preferentially escapes into high-velocity solar wind streams. A comprehensive view of the structure and evolution of the X-ray corona is given in terms of the physical conditions existing in the various coronal loops, and the importance of active regions is emphasized by examining their structure and time development over a wide range of scales.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Author(s):  
О. Кravchuk ◽  
V. Symonenkov ◽  
I. Symonenkova ◽  
O. Hryhorev

Today, more than forty countries of the world are engaged in the development of military-purpose robots. A number of unique mobile robots with a wide range of capabilities are already being used by combat and intelligence units of the Armed forces of the developed world countries to conduct battlefield intelligence and support tactical groups. At present, the issue of using the latest information technology in the field of military robotics is thoroughly investigated, and the creation of highly effective information management systems in the land-mobile robotic complexes has acquired a new phase associated with the use of distributed information and sensory systems and consists in the transition from application of separate sensors and devices to the construction of modular information subsystems, which provide the availability of various data sources and complex methods of information processing. The purpose of the article is to investigate the ways to increase the autonomy of the land-mobile robotic complexes using in a non-deterministic conditions of modern combat. Relevance of researches is connected with the necessity of creation of highly effective information and control systems in the perspective robotic means for the needs of Land Forces of Ukraine. The development of the Armed Forces of Ukraine management system based on the criteria adopted by the EU and NATO member states is one of the main directions of increasing the effectiveness of the use of forces (forces), which involves achieving the principles and standards necessary for Ukraine to become a member of the EU and NATO. The inherent features of achieving these criteria will be the transition to a reduction of tasks of the combined-arms units and the large-scale use of high-precision weapons and land remote-controlled robotic devices. According to the views of the leading specialists in the field of robotics, the automation of information subsystems and components of the land-mobile robotic complexes can increase safety, reliability, error-tolerance and the effectiveness of the use of robotic means by standardizing the necessary actions with minimal human intervention, that is, a significant increase in the autonomy of the land-mobile robotic complexes for the needs of Land Forces of Ukraine.


1994 ◽  
Vol 29 (12) ◽  
pp. 149-156 ◽  
Author(s):  
Marcus Höfken ◽  
Katharina Zähringer ◽  
Franz Bischof

A novel agitating system has been developed which allows for individual or combined operation of stirring and aeration processes. Basic fluid mechanical considerations led to the innovative hyperboloid design of the stirrer body, which ensures high efficiencies in the stirring and the aeration mode, gentle circulation with low shear forces, excellent controllability, and a wide range of applications. This paper presents the basic considerations which led to the operating principle, the technical realization of the system and experimental results in a large-scale plant. The characteristics of the system and the differences to other stirring and aeration systems are illustrated. Details of the technical realization are shown, which conform to the specific demands of applications in the biological treatment of waste water. Special regard is given to applications in the upgrading of small compact waste water treatment plants.


2012 ◽  
Vol 9 (1) ◽  
pp. 175-180
Author(s):  
Yu.D. Chashechkin

According to the results of visualization of streams, the existence of structures in a wide range of scales is noted: from galactic to micron. The use of a fundamental system of equations is substantiated based on the results of comparing symmetries of various flow models with the usage of theoretical group methods. Complete solutions of the system are found by the methods of the singular perturbations theory with a condition of compatibility, which determines the characteristic equation. A comparison of complete solutions with experimental data shows that regular solutions characterize large-scale components of the flow, a rich family of singular solutions describes formation of the thin media structure. Examples of calculations and observations of stratified, rotating and multiphase media are given. The requirements for the technique of an adequate experiment are discussed.


Author(s):  
Eun-Young Mun ◽  
Anne E. Ray

Integrative data analysis (IDA) is a promising new approach in psychological research and has been well received in the field of alcohol research. This chapter provides a larger unifying research synthesis framework for IDA. Major advantages of IDA of individual participant-level data include better and more flexible ways to examine subgroups, model complex relationships, deal with methodological and clinical heterogeneity, and examine infrequently occurring behaviors. However, between-study heterogeneity in measures, designs, and samples and systematic study-level missing data are significant barriers to IDA and, more broadly, to large-scale research synthesis. Based on the authors’ experience working on the Project INTEGRATE data set, which combined individual participant-level data from 24 independent college brief alcohol intervention studies, it is also recognized that IDA investigations require a wide range of expertise and considerable resources and that some minimum standards for reporting IDA studies may be needed to improve transparency and quality of evidence.


The Les Houches Summer School 2015 covered the emerging fields of cavity optomechanics and quantum nanomechanics. Optomechanics is flourishing and its concepts and techniques are now applied to a wide range of topics. Modern quantum optomechanics was born in the late 70s in the framework of gravitational wave interferometry, initially focusing on the quantum limits of displacement measurements. Carlton Caves, Vladimir Braginsky, and others realized that the sensitivity of the anticipated large-scale gravitational-wave interferometers (GWI) was fundamentally limited by the quantum fluctuations of the measurement laser beam. After tremendous experimental progress, the sensitivity of the upcoming next generation of GWI will effectively be limited by quantum noise. In this way, quantum-optomechanical effects will directly affect the operation of what is arguably the world’s most impressive precision experiment. However, optomechanics has also gained a life of its own with a focus on the quantum aspects of moving mirrors. Laser light can be used to cool mechanical resonators well below the temperature of their environment. After proof-of-principle demonstrations of this cooling in 2006, a number of systems were used as the field gradually merged with its condensed matter cousin (nanomechanical systems) to try to reach the mechanical quantum ground state, eventually demonstrated in 2010 by pure cryogenic techniques and a year later by a combination of cryogenic and radiation-pressure cooling. The book covers all aspects—historical, theoretical, experimental—of the field, with its applications to quantum measurement, foundations of quantum mechanics and quantum information. Essential reading for any researcher in the field.


2021 ◽  
Vol 14 ◽  
pp. 117862212110281
Author(s):  
Nieves Fernandez-Anez ◽  
Andrey Krasovskiy ◽  
Mortimer Müller ◽  
Harald Vacik ◽  
Jan Baetens ◽  
...  

Changes in climate, land use, and land management impact the occurrence and severity of wildland fires in many parts of the world. This is particularly evident in Europe, where ongoing changes in land use have strongly modified fire patterns over the last decades. Although satellite data by the European Forest Fire Information System provide large-scale wildland fire statistics across European countries, there is still a crucial need to collect and summarize in-depth local analysis and understanding of the wildland fire condition and associated challenges across Europe. This article aims to provide a general overview of the current wildland fire patterns and challenges as perceived by national representatives, supplemented by national fire statistics (2009–2018) across Europe. For each of the 31 countries included, we present a perspective authored by scientists or practitioners from each respective country, representing a wide range of disciplines and cultural backgrounds. The authors were selected from members of the COST Action “Fire and the Earth System: Science & Society” funded by the European Commission with the aim to share knowledge and improve communication about wildland fire. Where relevant, a brief overview of key studies, particular wildland fire challenges a country is facing, and an overview of notable recent fire events are also presented. Key perceived challenges included (1) the lack of consistent and detailed records for wildland fire events, within and across countries, (2) an increase in wildland fires that pose a risk to properties and human life due to high population densities and sprawl into forested regions, and (3) the view that, irrespective of changes in management, climate change is likely to increase the frequency and impact of wildland fires in the coming decades. Addressing challenge (1) will not only be valuable in advancing national and pan-European wildland fire management strategies, but also in evaluating perceptions (2) and (3) against more robust quantitative evidence.


Sign in / Sign up

Export Citation Format

Share Document