scholarly journals Soft X-ray analysis of a loop flare on the Sun

2004 ◽  
Vol 416 (1) ◽  
pp. 323-332 ◽  
Author(s):  
J. I. Khan ◽  
H. S. Hudson ◽  
Z. Mouradian
Keyword(s):  
The Sun ◽  
1968 ◽  
Vol 46 (10) ◽  
pp. S757-S760 ◽  
Author(s):  
R. P. Lin

The > 40-keV solar-flare electrons observed by the IMP III and Mariner IV satellites are shown to be closely correlated with solar radio and X-ray burst emission. In particular, intense type III radio bursts are observed to accompany solar electron-event flares. The energies of the electrons, the total number of electrons, and the size of the electron source at the sun can be inferred from radio observations. The characteristics of the electrons observed in interplanetary space are consistent with these radio observations. Therefore these electrons are identified as the exciting agents of the type III emission. It has been noted that the radio and X-ray bursts are part of the flash phase of flares. The observations indicate that a striking feature of the flash phase is the production of electrons of 10–100 keV energies.


1989 ◽  
Vol 104 (1) ◽  
pp. 289-298
Author(s):  
Giovanni Peres

AbstractThis paper discusses the hydrodynamic modeling of flaring plasma confined in magnetic loops and its objectives within the broader scope of flare physics. In particular, the Palermo-Harvard model is discussed along with its applications to the detailed fitting of X-ray light curves of solar flares and to the simulation of high-resolution Caxix spectra in the impulsive phase. These two approaches provide complementary constraints on the relevant features of solar flares. The extension to the stellar case, with the fitting of the light curve of an X-ray flare which occurred on Proxima Centauri, demonstrates the feasibility of using this kind of model for stars too. Although the stellar observations do not provide the wealth of details available for the Sun, and, therefore, constrain the model more loosely, there are strong motivations to pursue this line of research: the wider range of physical parameters in stellar flares and the possibility of studying further the solar-stellar connection.


2015 ◽  
Vol 11 (S320) ◽  
pp. 134-137
Author(s):  
John P. Pye ◽  
Simon R. Rosen

AbstractWe present estimates of cool-star X-ray flare rates determined from the XMM-Tycho survey (Pyeet al. 2015, A&A, 581, A28), and compare them with previously published values for the Sun and for other stellar EUV and white-light samples. We demonstrate the importance of applying appropriate corrections, especially in regard to the total, effective size of the stellar sample. Our results are broadly consistent with rates reported in the literature for Kepler white-light flares from solar-type stars, and with extrapolations of solar flare rates, indicating the potential of stellar X-ray flare observations to address issues such as ‘space weather’ in exoplanetary systems and our own solar system.


1994 ◽  
Author(s):  
Jonathan W. Campbell ◽  
Heather B. Stephens
Keyword(s):  
The Sun ◽  
X Ray ◽  

2012 ◽  
Vol 21 (4) ◽  
Author(s):  
D. A. Bezrukov ◽  
B. I. Ryabov ◽  
K. Shibasaki

AbstractOn the base of the 17 GHz radio maps of the Sun taken with the Nobeyama Radio Heliograph we estimate plasma parameters in the specific region of the sunspot atmosphere in the active region AR 11312. This region of the sunspot atmosphere is characterized by the depletion in coronal emission (soft X-ray and EUV lines) and the reduced absorption in the a chromospheric line (He I 1.083 μm). In the ordinary normal mode of 17 GHz emission the corresponding dark patch has the largest visibility near the central solar meridian. We infer that the reduced coronal plasma density of about ~ 5 × 10


2020 ◽  
Vol 64 (1) ◽  
pp. 58-65 ◽  
Author(s):  
E. S. Isaeva ◽  
V. M. Tomozov ◽  
S. A. Yazev
Keyword(s):  
The Sun ◽  
X Ray ◽  

1983 ◽  
Vol 101 ◽  
pp. 385-392
Author(s):  
Donald P. Cox

We observe the heating of interstellar material in young supernova remnants (SNR). In addition, when analyzing the soft X-ray background we find evidence for large isolated regions of apparently hot, low density material. These, we infer, may have been heated by supernovae. One such region seems to surround the Sun. This has been modeled as a supernova remnant viewed from within. The most reasonable parameters are ambient density no ~ 0.004 cm−3, radius of about 100 pc, age just over 105 years (Cox and Anderson 1982).


2019 ◽  
Vol 486 (4) ◽  
pp. 4671-4685 ◽  
Author(s):  
Wageesh Mishra ◽  
Nandita Srivastava ◽  
Yuming Wang ◽  
Zavkiddin Mirtoshev ◽  
Jie Zhang ◽  
...  

ABSTRACT Similar to the Sun, other stars shed mass and magnetic flux via ubiquitous quasi-steady wind and episodic stellar coronal mass ejections (CMEs). We investigate the mass loss rate via solar wind and CMEs as a function of solar magnetic variability represented in terms of sunspot number and solar X-ray background luminosity. We estimate the contribution of CMEs to the total solar wind mass flux in the ecliptic and beyond, and its variation over different phases of the solar activity cycles. The study exploits the number of sunspots observed, coronagraphic observations of CMEs near the Sun by SOHO/LASCO, in situ observations of the solar wind at 1 AU by WIND, and GOES X-ray flux during solar cycles 23 and 24. We note that the X-ray background luminosity, occurrence rate of CMEs and ICMEs, solar wind mass flux, and associated mass loss rates from the Sun do not decrease as strongly as the sunspot number from the maximum of solar cycle 23 to the next maximum. Our study confirms a true physical increase in CME activity relative to the sunspot number in cycle 24. We show that the CME occurrence rate and associated mass loss rate can be better predicted by X-ray background luminosity than the sunspot number. The solar wind mass loss rate which is an order of magnitude more than the CME mass loss rate shows no obvious dependency on cyclic variation in sunspot number and solar X-ray background luminosity. These results have implications for the study of solar-type stars.


Sign in / Sign up

Export Citation Format

Share Document