scholarly journals Design adaptation of the automobile and tractor diesel engine for work on mixed vegetable-mineral fuel

2020 ◽  
Vol 17 ◽  
pp. 00077 ◽  
Author(s):  
Alexei Khokhlov ◽  
Anton Khokhlov ◽  
Dmitry Maryin ◽  
Denis Molochnikov ◽  
Ilnar Gayaziev

The article is devoted to the solution of the problem associated with the partial substitution of marketable mineral diesel fuel (DF) with mixed vegetable-mineral (MDF) engine fuel. The bio-component of MDF is vegetable oil, for example, Camelina seed oil. A design option of a dual-fuel feeding system has been proposed, the main component of which is a mixing and metering unit for vegetable oil and mineral diesel fuel which allows electric metering units controlled by an electronic control unit (ECU) to respond to signals from diesel load-speed sensors (crankshaft speed, injector rack position (fuel injection pump)) and temperature gauge of camelina oil, to ensure the feed of mixed diesel fuel with components of different content. The use of mixed diesel fuel based on vegetable oil, containing for example 50 % of mineral commercial fuel and 50 % of camelina oil, makes it possible with a slight decrease in the effective power (not more than 6 %) and some increase in the specific effective consumption of mixed fuel (up to 14 %) to save 50 % of fuel of petroleum origin, as well as to reduce the smoke opacity of exhaust gases by 17–20 % and reduce the content of carbon oxide by 35–40 % compared with the work of a diesel engine on commercial mineral diesel fuel.

2019 ◽  
Vol 14 (3) ◽  
pp. 122-127
Author(s):  
Алексей Хохлов ◽  
Aleksey Hohlov ◽  
Денис Молочников ◽  
Denis Molochnikov ◽  
Антон Хохлов ◽  
...  

The article is devoted to solving the problem, associated with the partial replacement of commercial mineral diesel fuel (DT) with mixed vegetable-mineral (DST) motor fuel. DST biocomponent is a vegetable oil, for example, camelina oil. A constructive version of a dual-fuel diesel power supply system is proposed, the main element of which is a mixer-dispenser of vegetable oil and mineral diesel fuel, which, due to the electrodosers controlled by the electronic control unit (ECU), is used according to the signals of the load-speed diesel engine sensors (crankshaft rotational speed, position rail of the high pressure fuel pump) and the camelina oil temperature sensor, to ensure the supply of diesel mixed fuel with different contents components. Under the supervision were tractors of one year of production, with approximately the same operating time and carrying out the same production work at the livestock complex of the enterprise. The estimated parameters of wear of the plunger pairs of the pump sections of the injection pump are: the geometric dimensions of the details of the plunger pairs (ovality and taper of the plunger, diameters of the plunger and sleeve, annular gap between the plunger and the sleeve); mass of parts of plunger pairs (plunger, sleeve); volumetric cyclic fuel supply, hydraulic density of plunger pairs. The use of diesel mixed fuel based on vegetable oil, containing for example 50% mineral marketable fuel and 50% camelina oil, allows a slight decrease in effective power (not more than 6%) and a slight increase in the specific effective consumption of mixed fuel (up to 14%) % of fuel of petroleum origin, as well as reduce exhaust smoke by 17-20% and reduce the content of carbon monoxide by 35-40% compared with the operation of diesel on commercial mineral diesel fuel.


Author(s):  
Tomi R. Krogerus ◽  
Mika P. Hyvönen ◽  
Kalevi J. Huhtala

Diesel engines are widely used due to their high reliability, high thermal efficiency, fuel availability, and low consumption. They are used to generate power, e.g., in passenger cars, ships, power plants, marine offshore platforms, and mining and construction machines. The engine is at heart of these applications, so keeping it in good working condition is vital. Recent technical and computational advances and environmental legislation have stimulated the development of more efficient and robust techniques for the diagnostics of diesel engines. The emphasis is on the diagnostics of faults under development and the causes of engine failure or reduced efficiency. Diesel engine fuel injection plays an important role in the development of the combustion in the engine cylinder. Arguably, the most influential component of the diesel engine is the fuel injection equipment; even minor faults can cause a major loss of efficiency of the combustion and an increase in engine emissions and noise. With increased sophistication (e.g., higher injection pressures) being required to meet continuously improving noise, exhaust smoke, and gaseous emission regulations, fuel injection equipment is becoming even more susceptible to failure. The injection systems have been shown to be the largest contributing factor in diesel engine failures. Extracting the health information of components in the fuel injection system is a very demanding task. Besides the very time-consuming nature of experimental investigations, direct measurements are also limited to selected observation points. Diesel engine faults normally do not occur in a short timeframe. The modeling of typical engine faults, particularly combustion related faults, in a controlled manner is thus vital for the development of diesel engine diagnostics and fault detection. Simulation models based on physical grounds can enlarge the number of studied variables and also obtain a better understanding of localized phenomena that affect the overall behavior of the system. This paper presents a survey of the analysis, modeling, and diagnostics of diesel fuel injection systems. Typical diesel fuel injection systems and their common faults are presented. The most relevant state of the art research articles on analysis and modeling of fluid injection systems as well as diagnostics techniques and measured signals describing the behavior of the system are reviewed and the results and findings are discussed. The increasing demand and effect of legislation related to diagnostics, especially on-board diagnostics (OBD), are discussed with reference to the future progress of this field.


2021 ◽  
Author(s):  
◽  
Luke James Frogley

<p>Rising costs of diesel fuel has led to an increased interest in dual fuel diesel engine conversion, which can offset diesel consumption though the simultaneous combustion of a secondary gaseous fuel. This system offers benefits both environmentally and financially in an increasingly energy-conscious society. Dual fuel engine conversions have previously been fitted to mechanical injection systems, requiring physical modification of the fuel pump. The aim of this work is to develop a novel electronic dual fuel control system that may be installed on any modern diesel engine using common rail fuel injection with solenoid injector valves, eliminating the need for mechanical modification of the diesel fuel system.  The dual fuel electronic control unit developed replaces up to 90 percent of the diesel fuel required with cleaner-burning and cheaper compressed natural gas, providing the same power output with lower greenhouse gas emissions than pure diesel. The dual fuel system developed controls the flow of diesel, gas, air, and engine timing to ensure combustion is optimised to maintain a specific torque at a given speed and demand. During controlled experimental analysis, the dual fuel system exceeded the target substitution rate of 90 precent, with a peak diesel substitution achieved of 97 percent, whilst maintaining the same torque performance of the engine under diesel operation.</p>


2018 ◽  
Vol 19 (12) ◽  
pp. 411-414
Author(s):  
Wincenty Lotko ◽  
Krzysztof Górski ◽  
Jerzy Stobiecki

The paper presents results of the crankshaft acceleration process of the diesel engine fuelled with diesel oil - diethyl ether blends. In particular mixtures of diesel fuel with addition of 5, 10, 15 and 20 % by volume were tested. Results confirmed that DEE addition has negative impact on acceleration process of the AD3.152 engine. However it should be pointed that tests were carried out for nominal settings of the engine fuel injection system. It means that these settings were not optimal for tested blends with different physico-chemical properties compared to regular diesel fuel.


2013 ◽  
Vol 724-725 ◽  
pp. 1249-1253
Author(s):  
Wei Li ◽  
Fan Bin Li ◽  
Wen Wang

Fuel injection pumps of Diesel engine are lubricated primarily by the fuel itself, so the fuel should have lubricity. It has been proved that diesel engine has some extraordinary virtues when fueled with dimethyl ether (DME), but the precision pairs (plunger and needle valve pairs) of the fuel system will wear badly when pure DME is used. As well known, some vegetable oil contains fatty acid, which possess polar-headed and long straight chain in molecular, so vegetable oils should be good boundary lubrication additives. In this paper, the lubricity of pure DME and DME added with castor oil and rap oil as lubrication additive were detected. The endurance test for each kind of fuel was carried out for 160 hours. The results show that, By adding 2% castor oil or 6% rap oil into DME, the surface of plunger is no obvious wear,the maximum supply pressure of pump declines less than 6 MPa and 3MPa correspondingly, the decompression time of delivery valve decrease less than 10 seconds and 5 seconds respectively. The results demonstrate that the lubrication performance of dimethyl ether will be improved greatly by adding right amount of certain vegetable oil.


Author(s):  
Pavlo Chishkala ◽  
Denis Meshkov ◽  
Oduard Bozhko

The analysis of diagnostic methods of diesel engines is given. The principle of diagnostics by certain methods, parameters, by which the diagnostics of fuel injection equipment is conducted, as well as disadvantages of one or another method are considered. The main causes of derangements in the nodes of the fuel injection equipment of diesel engines are determined. The examples have proved that the direct diagnostics methods are the most effective in determining correlation dependencies, for example, indicating the workflow in a diesel cylinder. It is particularly established that the methods of technical diagnostics do not require dismantling of the fuel injection equipment and have proven themselves to be versatile and operative, allowing to comprehensively evaluate the condition of the diesel. The methods of non-separable diagnostic of the condition of a diesel engine are described in detail, the features of such indirect diagnostic methods as vibration, acoustic, indirect indicating by determining the voltage in the cylinder head studs, estimation of the wear rate of component parts with a metal content in engine oil, as well as diagnosing with uneven rate speed of the crankshaft. The vibro-acoustic diagnostic method of a diesel engine can be used to determine the technical condition of such elements as a diesel fuel injection pump , nozzles, and a fuel-priming pump. In addition, the characteristics of motor testers, highly specialized testers and auto scanners are given. A diagnostic feature using a computer auto scanner is that it allows evaluating the condition of nodes in a comprehensive manner, that is, taking into account the mutual influence of derangements on each other. It is noted that the methods that do not require disassembling can be considered the most effective, and the most accurate assessment of the technical condition of the diesel fuel system can be given using the diagnostic method according to the parameters of work processes.


Author(s):  
A.N. Kartashevich ◽  
S.A. Plotnukov ◽  
M.V. Motovilova

Цель исследований экспериментальное определение регулировочных показателей дизельного двигателя Д-245.5S2 при его работе на высокотемпературном дизельном топливе. Объект исследования экспериментальная установка: двигатель Д-245.5S2, электротормозной стенд RAPIDO SAK N670 с балансирной маятниковой машиной. Значение установочного угла опережения впрыскивания топлива изменялось в диапазоне от 10 до 30 градусов, через каждые четыре градуса. Испытания проводились на дизельном и подогретом дизельном топливе. Температура подогрева топлива составляла 100 С и 300 С. Предварительное тепловое воздействие на топливо осуществлялось при помощи нагревательного устройства. Подогрев дизельного топлива производился на линии высокого давления между ТНВД и форсункой. Опираясь на полученные в результате испытаний экспериментальные данные, были установлены зависимости регулировочных показателей дизеля при его работе на подогретом топливе. Также выявлены изменения токсичности и дымности отработавших газов при разных значениях установочного угла опережения впрыскивания топлива. Приведены графики регулировочных характеристик по установочному углу опережения впрыскивания топлива без подогрева и с подогревом до 100 С и 300 С (эффективные показатели, показатели токсичности и дымности отработавших газов при частоте вращения коленчатого вала n1800 мин-1). В результате испытаний установлено, что применение подогретого топлива не оказывает заметного влияния на работоспособность форсунки и систему питания дизельного двигателя. Угол опережения впрыскивания топлива впр, при котором эффективные показатели работы двигателя являются оптимальными, составляет 18-22 градуса.The purpose of research experimental determination of the adjustment parameters of the diesel engine D-245.5S2 at its operation on high temperature diesel fuel. Object of study: experimental setup (engine D-245.5S2, electric brake stand RAPIDO SAK N670 with balancing pendulum machine). The value of the angle of advance of fuel injection was varied in the range from 10 to 30 degrees, at intervals of four degrees. Tests were carried out on diesel and heated diesel fuel. Fuel heating temperature 100C and 300C. Preliminary thermal influence on fuel was carried out by means of the heating device. Heating of diesel fuel was carried out on the high pressure line between the injection pump and the nozzle. Based on the experimental data obtained as a result of the tests, the dependence of the adjustment parameters of the diesel during its operation on heated fuel was established. Also, changes in toxicity and smoke, exhaust gases from different values of the installation angle of advance of fuel injection were revealed. The graphs of the adjustment characteristics of the installation angle of advance fuel injection without heating and heated 100C and 300C (effective indicators, indicators of toxicity and smoke in the exhaust gases at a speed of the crankshaft n1800 min-1). As a result of the tests, it was found that the use of heated fuel does not have a noticeable effect on the performance of the injector and the power supply system of the diesel engine. A corner of an advancing of injection of fuel впр at which efficient performance of the engine are the optimum is 18/22.


2021 ◽  
Author(s):  
◽  
Luke James Frogley

<p>Rising costs of diesel fuel has led to an increased interest in dual fuel diesel engine conversion, which can offset diesel consumption though the simultaneous combustion of a secondary gaseous fuel. This system offers benefits both environmentally and financially in an increasingly energy-conscious society. Dual fuel engine conversions have previously been fitted to mechanical injection systems, requiring physical modification of the fuel pump. The aim of this work is to develop a novel electronic dual fuel control system that may be installed on any modern diesel engine using common rail fuel injection with solenoid injector valves, eliminating the need for mechanical modification of the diesel fuel system.  The dual fuel electronic control unit developed replaces up to 90 percent of the diesel fuel required with cleaner-burning and cheaper compressed natural gas, providing the same power output with lower greenhouse gas emissions than pure diesel. The dual fuel system developed controls the flow of diesel, gas, air, and engine timing to ensure combustion is optimised to maintain a specific torque at a given speed and demand. During controlled experimental analysis, the dual fuel system exceeded the target substitution rate of 90 precent, with a peak diesel substitution achieved of 97 percent, whilst maintaining the same torque performance of the engine under diesel operation.</p>


Sign in / Sign up

Export Citation Format

Share Document