scholarly journals Identification of Nepeta olgae Regel and phylogenetic status of some genera in subtribe Nepetinae (Lamiaceae) using DNA markers

2021 ◽  
Vol 38 ◽  
pp. 00087
Author(s):  
Elena Nikitina ◽  
Abdurashid Rakhmatov

The species level diversity is the reference unit for biodiversity accounting, should be systematized and include full information about the species. Reliable identification of any species is critical for a large-scale biodiversity monitoring and conservation. A DNA barcode is a DNA sequence that identifies a species by comparing the sequence of an unknown species with barcodes of a known species sequence database. Accurate identification of important plants is essential for their conservation, inventory. The species diversity assessing exampled on the subtribe Nepetinae (Lamiaceae) representatives, growing in Uzbekistan is given, using DNA barcoding method. The study was aimed to identify indigenous important plants with the nuclear (ITS) and plastid (matK, rbcL, trnL-F) genomes. This work demonstrates the phylogenetic relationships of some genera within the subtribe Nepetinae Coss. & Germ. (Lamiaceae), based on ITS locus gene. All results indicate that the DNA barcoding tool can be successfully used to reliably identify important plants, to inventory the botanical resources of Uzbekistan and to create a reference library of DNA barcodes. So, the combination of three-four locus gene is a good candidate for this approach.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5013 ◽  
Author(s):  
Lijuan Wang ◽  
Zhihao Wu ◽  
Mengxia Liu ◽  
Wei Liu ◽  
Wenxi Zhao ◽  
...  

Rongcheng Bay is a coastal bay of the Northern Yellow Sea, China. To investigate and monitor the fish resources in Rongcheng Bay, 187 specimens from 41 different species belonging to 28 families in nine orders were DNA-barcoded using the mitochondrial cytochrome c oxidase subunit I gene (COI). Most of the fish species could be discriminated using this COI sequence with the exception of Cynoglossus joyneri and Cynoglossus lighti. The average GC% content of the 41 fish species was 47.3%. The average Kimura 2-parameter genetic distances within the species, genera, families, and orders were 0.21%, 5.28%, 21.30%, and 23.63%, respectively. Our results confirmed that the use of combined morphological and DNA barcoding identification methods facilitated fish species identification in Rongcheng Bay, and also established a reliable DNA barcode reference library for these fish. DNA barcodes will contribute to future efforts to achieve better monitoring, conservation, and management of fisheries in this area.


Author(s):  
Qian Tang ◽  
Qi Luo ◽  
Qian Duan ◽  
Lei Deng ◽  
Renyi Zhang

Nowadays, the global fish consumption continues to rise along with the continuous growth of the population, which has led to the dilemma of overfishing of fishery resources. Especially high-value fish that are overfished are often replaced by other fish. Therefore, the accurate identification of fish products in the market is a problem worthy of attention. In this study, full-DNA barcoding (FDB) and mini-DNA barcoding (MDB) used to detect the fraud of fish products in Guiyang, Guizhou province in China. The molecular identification results showed that 39 of the 191 samples were not consistent with the labels. The mislabelling of fish products for fresh, frozen, cooked and canned were 11.70%, 20.00%, 34.09% and 50.00%, respectively. The average kimura 2 parameter distances of MDB within species and genera were 0.27% and 5.41%, respectively; while average distances of FDB were 0.17% within species and 6.17% within genera. In this study, commercial fraud is noticeable, most of the high-priced fish were replaced of low-priced fish with a similar feature. Our study indicated that DNA barcoding is a valid tool for the identification of fish products and that it allows an idea of conservation and monitoring efforts, while confirming the MDB as a reliable tool for fish products.


2019 ◽  
Author(s):  
Erwan Delrieu-Trottin ◽  
Jeffrey T. Williams ◽  
Diane Pitassy ◽  
Amy Driskell ◽  
Nicolas Hubert ◽  
...  

AbstractThe emergence of DNA barcoding and metabarcoding opened new ways to study biological diversity, however, the completion of DNA barcode libraries is fundamental for such approaches to succeed. This dataset is a DNA barcode reference library (fragment of Cytochrome Oxydase I gene) for 2,190 specimens representing at least 540 species of shore fishes collected over 10 years at 154 sites across the four volcanic archipelagos of French Polynesia; the Austral, Gambier, Marquesas and Society Islands, a 5,000,000 km2area. At present, 65% of the known shore fish species of these archipelagoes possess a DNA barcode associated with preserved, photographed, tissue sampled and cataloged specimens, and extensive collection locality data. This dataset represents one of the most comprehensive DNA barcoding efforts for a vertebrate fauna to date. Considering the challenges associated with the conservation of coral reef fishes and the difficulties of accurately identifying species using morphological characters, this publicly available library is expected to be helpful for both authorities and academics in various fields.


2021 ◽  
Vol 5 (5) ◽  
Author(s):  
Juha Salokannel ◽  
Kyung Min Lee ◽  
Aki Rinne ◽  
Marko Mutanen

Abstract Large-scale global efforts on DNA barcoding have repeatedly revealed unexpected patterns of variability in mtDNA, including deep intraspecific divergences and haplotype sharing between species. Understanding the evolutionary causes behind these patterns calls for insights from the nuclear genome. While building a near-complete DNA barcode library of Finnish caddisflies, a case of barcode-sharing and some cases of deep intraspecific divergences were observed. In this study, the Apatania zonella (Zetterstedt, 1840) group and three Limnephilus Leach, 1815 species were studied using double digest RAD sequencing (ddRAD-seq), morphology, and DNA barcoding. The results support the present species boundaries in the A. zonella group species. A morphologically distinct but mitogenetically nondistinct taxon related to parthenogenetic Apatania hispida (Forsslund, 1930) got only weak support for its validity as a distinct species. The morphology and genomic-scale data do not indicate cryptic diversity in any of the three Limnephilus species despite the observed deep intraspecific divergences in DNA barcodes. This demonstrates that polymorphism in mtDNA may not reflect cryptic diversity, but mitonuclear discordance due to other evolutionary causes.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1410
Author(s):  
Inkyu Park ◽  
Sungyu Yang ◽  
Goya Choi ◽  
Byeong Cheol Moon ◽  
Jun-Ho Song

To guarantee the safety and efficacy of herbal medicines, accurate identification and quality evaluation are crucial. The ripe dried seeds of Cuscuta australis R.Br. and C. chinensis Lam. are known as Cuscutae Semen (CS) and are widely consumed in Northeast Asia; however, the seeds of other species can be misidentified as CS owing to morphological similarities, leading to misuse. In this report, we propose a multilateral strategy combining microscopic techniques with statistical analysis and DNA barcoding using a genus-specific primer to facilitate the identification and authentication of CS. Morphology-based identification using microscopy revealed that the useful diagnostic characteristics included general shape, embryo exudation, hairiness, and testa ornamentation, which were used to develop an effective identification key. In addition, we conducted DNA barcoding-based identification to ensure accurate authentication. A novel DNA barcode primer was produced from the chloroplast rbcL gene by comparative analysis using Cuscuta chloroplast genome sequences, which allowed four Cuscuta species and adulterants to be discriminated completely. Therefore, this investigation overcame the limitations of universal DNA barcodes for Cuscuta species with high variability. We believe that this integrated approach will enable CS to be differentiated from other species, thereby improving its quality control and product safety in medicinal markets.


2017 ◽  
Vol 98 (7) ◽  
pp. 1675-1683 ◽  
Author(s):  
Elena Marco-Herrero ◽  
Pilar Drake ◽  
Jose A. Cuesta

Four species of Pinnotheridae inhabit European marine waters,Afropinnotheres monodi,Nepinnotheres pinnotheres,Pinnotheres pectunculiandPinnotheres pisum. For these four species there are data available on the morphology of their larval stages as well as DNA markers. This information has allowed us to detect some larvae in plankton samples from the Gulf of Cadiz (SW Iberian Peninsula) that do not belong to any of these European pinnotherid species and to be confirmed by DNA barcoding. In this study these findings are shown as a case of early detection of a newly introduced and unknown species in European marine waters.


2019 ◽  
Vol 47 (2) ◽  
pp. 333-342
Author(s):  
Abu Faiz Md Aslam ◽  
Sharmin Sultana ◽  
Sumita Rani Das ◽  
Abdul Jabber Howlader

Tribolium confusum and Tribolium castaneum (Coleoptera: Tenebrionidae) are two very confusing pest species while identification is done on the basis of morphology only. Such pests are discovered in stored grain as immature stages, which further complicates the identification process. Accurate identification of these pests is urgently required for integrated pest management. In this research, DNA barcoding was used to identify these pests accurately at any life stage. A 658 bp fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene was analyzed. DNA barcode dataset of T. confusum (GeneBank Acc. no. MK120453.1) and T. castaneum (Acc. no. MK411585.1) were constructed. The nucleotide composition reveals that average AT contents (59.9%) were higher than the GC contents (38.6%). Phylogenetic analysis by maximum likelihood method showed that both the species were originated from a common major clade. About 17.13% nucleotide differences were noted between the CO1 sequences by multiple sequence alignment. The interspecies nucleotide genetic distance (0.200) was calculated using Kimura 2 parameter. Haplotype analysis showed high genetic diversity (112 mutaional steps) among them. Bangladesh J. Zool. 47(2): 333-342, 2019


2021 ◽  
Vol 9 ◽  
Author(s):  
Parvin Aghayeva ◽  
Salvatore Cozzolino ◽  
Donata Cafasso ◽  
Valida Ali-zade ◽  
Silvia Fineschi ◽  
...  

DNA barcoding has rapidly become a useful complementary tool in floristic investigations particularly for identifying specimens that lack diagnostic characters. Here, we assess the capability of three DNA barcode markers (chloroplast rpoB, accD and nuclear ITS) for correct species assignment in a floristic survey on the Caucasus. We focused on two herbal groups with potential for ornamental applications, namely orchids and asterids. On these two plant groups, we tested whether our selection of barcode markers allows identification of the “barcoding gap” in sequence identity and to distinguish between monophyletic species when employing distance-based methods. All markers successfully amplified most specimens, but we found that the rate of species-level resolution amongst selected markers largely varied in the two plant groups. Overall, for both lineages, plastid markers had a species-level assignment success rate lower than the nuclear ITS marker. The latter confirmed, in orchids, both the existence of a barcoding gap and that all accessions of the same species clustered together in monophyletic groups. Further, it also allowed the detection of a phylogeographic signal.The ITS marker resulted in its being the best performing barcode for asterids; however, none of the three tested markers showed high discriminatory ability. Even if ITS were revealed as the most promising plant barcode marker, we argue that the ability of this barcode for species assignment is strongly dependent on the evolutionary history of the investigated plant lineage.


Author(s):  
Takeru Nakazato

DNA barcoding technology has become employed widely for biodiversity and molecular biology researchers to identify species and analyze their phylogeny. Recently, DNA metabarcoding and environmental DNA (eDNA) technology have developed by expanding the concept of DNA barcoding. These techniques analyze the diversity and quantity of organisms within an environment by detecting biogenic DNA in water and soil. It is particularly popular for monitoring fish species living in rivers and lakes (Takahara et al. 2012). BOLD Systems (Barcode of Life Database systems, Ratnasingham and Hebert 2007) is a database for DNA barcoding, archiving 8.5 million of barcodes (as of August 2020) along with the voucher specimen, from which the DNA barcode sequence is derived, including taxonomy, collected country, and museum vouchered as metadata (e.g. https://www.boldsystems.org/index.php/Public_RecordView?processid=TRIBS054-16). Also, many barcoding data are submitted to GenBank (Sayers et al. 2020), which is a database for DNA sequences managed by NCBI (National Center for Biotechnology Information, US). The number of the records of DNA barcodes, i.e. COI (cytochrome c oxidase I) gene for animal, has grown significantly (Porter and Hajibabaei 2018). BOLD imports DNA barcoding data from GenBank, and lots of DNA barcoding data in GenBank are also assigned BOLD IDs. However, we have to refer to both BOLD and GenBank data when performing DNA barcoding. I have previously investigated the registration of DNA barcoding data in GenBank, especially the association with BOLD, using insects and flowering plants as examples (Nakazato 2019). Here, I surveyed the number of species covered by BOLD and GenBank. I used fish data as an example because eDNA research is particularly focused on fish. I downloaded all GenBank files for vertebrates from NCBI FTP (File Transfer Protocol) sites (as of November 2019). Of the GenBank fish entries, 86,958 (7.3%) were assigned BOLD identifiers (IDs). The NCBI taxonomy database has registrations for 39,127 species of fish, and 20,987 scientific names at the species level (i.e., excluding names that included sp., cf. or aff.). GenBank entries with BOLD IDs covered 11,784 species (30.1%) and 8,665 species-level names (41.3%). I also obtained whole "specimens and sequences combined data" for fish from BOLD systems (as of November 2019). In the BOLD, there are 273,426 entries that are registered as fish. Of these entries, 211,589 BOLD entries were assigned GenBank IDs, i.e. with values in “genbank_accession” column, and 121,748 entries were imported from GenBank, i.e. with "Mined from GenBank, NCBI" description in "institution_storing" column. The BOLD data covered 18,952 fish species and 15,063 species-level names, but 35,500 entries were assigned no species-level names and 22,123 entries were not even filled with family-level names. At the species level, 8,067 names co-occurred in GenBank and BOLD, with 6,997 BOLD-specific names and 599 GenBank-specific names. GenBank has 425,732 fish entries with voucher IDs, of which 340,386 were not assigned a BOLD ID. Of these 340,386 entries, 43,872 entries are registrations for COI genes, which could be candidates for DNA barcodes. These candidates include 4,201 species that are not included in BOLD, thus adding these data will enable us to identify 19,863 fish to the species level. For researchers, it would be very useful if both BOLD and GenBank DNA barcoding data could be searched in one place. For this purpose, it is necessary to integrate data from the two databases. A lot of biodiversity data are recorded based on the Darwin Core standard while DNA sequencing data are sometimes integrated or cross-linked by RDF (Resource Description Framework). It may not be technically difficult to integrate these data, but the species data referenced differ from the EoL (The Encyclopedia of Life) for BOLD and the NCBI taxonomy for GenBank, and the differences in taxonomic systems make it difficult to match by scientific name description. GenBank has fields for the latitude and longitude of the specimens sampled, and Porter and Hajibabaei 2018 argue that this information should be enhanced. However, this information may be better described in the specimen and occurrence databases. The integration of barcoding data with the specimen and occurrence data will solve these problems. Most importantly, it will save the researcher from having to register the same information in multiple databases. In the field of biodiversity, only DNA barcode sequences may have been focused on and used as gene sequences. The museomics community regards museum-preserved specimens as rich resources for DNA studies because their biodiversity information can accompany the extraction and analysis of their DNA (Nakazato 2018). GenBank is useful for biodiversity studies due to its low rate of mislabelling (Leray et al. 2019). In the future, we will be working with a variety of DNA, including genomes from museum specimens as well as DNA barcoding. This will require more integrated use of biodiversity information and DNA sequence data. This integration is also of interest to molecular biologists and bioinformaticians.


2022 ◽  
Vol 2022 ◽  
pp. 1-19
Author(s):  
Sarfraz Ahmed ◽  
Muhammad Ibrahim ◽  
Chanin Nantasenamat ◽  
Muhammad Farrukh Nisar ◽  
Aijaz Ahmad Malik ◽  
...  

DNA barcodes are regarded as hereditary succession codes that serve as a recognition marker to address several queries relating to the identification, classification, community ecology, and evolution of certain functional traits in organisms. The mitochondrial cytochrome c oxidase 1 (CO1) gene as a DNA barcode is highly efficient for discriminating vertebrate and invertebrate animal species. Similarly, different specific markers are used for other organisms, including ribulose bisphosphate carboxylase (rbcL), maturase kinase (matK), transfer RNA-H and photosystem II D1-ApbsArabidopsis thaliana (trnH-psbA), and internal transcribed spacer (ITS) for plant species; 16S ribosomal RNA (16S rRNA), elongation factor Tu gene (Tuf gene), and chaperonin for bacterial strains; and nuclear ITS for fungal strains. Nevertheless, the taxon coverage of reference sequences is far from complete for genus or species-level identification. Applying the next-generation sequencing approach to the parallel acquisition of DNA barcode sequences could greatly expand the potential for library preparation or accurate identification in biodiversity research. Overall, this review articulates on the DNA barcoding technology as applied to different organisms, its universality, applicability, and innovative approach to handling DNA-based species identification.


Sign in / Sign up

Export Citation Format

Share Document