scholarly journals District heating simulation in the aspect of heat supply safety

2018 ◽  
Vol 45 ◽  
pp. 00005 ◽  
Author(s):  
Bożena Babiarz ◽  
Paweł Kut

District heating systems as strategic objects from the point of view of state security must ensure reliability and security in supply of heat to their customers [1, 2]. Thanks to computer simulation methods, district heating companies can analyse the operation of the heating networks at the design and operation stage. Computer simulations also offer a wide range of possibilities in the aspect of optimization of the district heating operation as well as prediction and analysis of network failure effects [3-6]. The paper concerns the simulation of a district heating network. The methods for the simulation of heating networks were characterized and simulations of district heating system were carried out. The effects of the failure were analysed at different values of outside temperatures and for different durations of failure. The value of compensation for undelivered heat was also determined. Simulations were carried out for an actual district heating system located in Rzeszow.

2019 ◽  
Vol 292 ◽  
pp. 01052
Author(s):  
Viliam Dolinay ◽  
Lubomir Vasek

Reducing heating system performance by applying a temperature setback as a means of saving heating costs is a well-known and widely used practice. There are discussions about setback achievements, especially about the amount of real savings it brings. However, it is not easy to declare any number - a percentage, because not only most of the heated objects are different, but especially the effects that affect them - from the location of building to demand and user behavior. In real life, heat consumers apply different setbacks to their heating systems, that is a fact, and from the heat supplier's point of view, it is desirable to adopt this consumer behavior and plan a central heat supply more efficiently with a view to this fact. This article focuses on this issue. It shows the results of a practical experiment that took place in the heating season 2018/2019 in the local district heating system. The experiment carried out was that half the heating season was the temperature of the heating water determined only based on the heating curve coming from the current outdoor temperature, and for the second half of the season was applied night setback - for 5 hours every day, the temperature was lower by 10%. Evaluating the experiment showed a decrease in the demanded heat of about 8% compared to the first part of the heating season. All this savings cannot be unambiguously attributed to the applied setback, because every part of the heating season has its specifics, but as the article shows a value of about 2.4%, it seems real. Contribution in the range of several percent may not at first glance seem attractive, but if we consider that the introduction of the setback procedure does not usually mean extra cost and also the district heating systems require to deliver daily hundreds of gigajoules of the heat (considering a small town), each saved percentage has its value. At the same time, this article highlights other minor improvements that could introduce additional, maybe small but perhaps exciting savings.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3218
Author(s):  
Pedro Durán ◽  
Herena Torio ◽  
Patrik Schönfeldt ◽  
Peter Klement ◽  
Benedikt Hanke ◽  
...  

There are 1454 district heating systems in Germany. Most of them are fossil based and with high temperature levels, which is neither efficient nor sustainable and needs to be changed for reaching the 2050 climate goals. In this paper, we present a case study for transforming a high to low temperature district heating system which is more suitable for renewable energy supply. With the Carnot Toolbox, a dynamic model of a potential district heating system is simulated and then transformed to a low temperature supply. A sensitivity analysis is carried out to see the system performance in case space constrains restrict the transformation. Finally, an economic comparison is performed. Results show that it is technically possible to perform the transformation until a very low temperature system. The use of decentralized renewable sources, decentralized heat storage tanks and the placement of a heat pump on each building are the key points to achieve the transformation. Regarding the sensitivity analysis, the transformation is worth doing until the seasonal storage and solar collector field sizes are reduced to 60% and 80% of their values in the reference case, respectively. The economic analysis shows, however, that it is hard for highly efficient low temperature renewable based heat networks to compete with district heating systems based on a centralized fossile CHP solution. Thus, though the presented transformation is technically possible, there is a strong need to change existing economic schemes and policies for fostering a stronger promotion of renewable energy policies in the heat sector.


Author(s):  
Anna Volkova ◽  
Vladislav Mashatin ◽  
Aleksander Hlebnikov ◽  
Andres Siirde

Abstract The purpose of this paper is to offer a methodology for the evaluation of large district heating networks. The methodology includes an analysis of heat generation and distribution based on the models created in the TERMIS and EnergyPro software Data from the large-scale Tallinn district heating system was used for the approbation of the proposed methodology as a basis of the case study. The effective operation of the district heating system, both at the stage of heat generation and heat distribution, can reduce the cost of heat supplied to the consumers. It can become an important factor for increasing the number of district heating consumers and demand for the heat load, which in turn will allow installing new cogeneration plants, using renewable energy sources and heat pump technologies


Author(s):  
Krzysztof Badyda ◽  
Wojciech Bujalski ◽  
Jarosław Milewski ◽  
Michał Warchoł

Heat accumulators in large district heating systems are used to buffer heat production. Their main purpose is to make heat production as independent as possible from district heating system demand. To do this effectively a heat accumulator of appropriate capacity must be selected. In large district heating systems, heat accumulators can be used for equalising production over periods lasting a few hours. Accumulators can be used for optimising electricity and heat production to achieve possible highest income. It may be important in situations where on-line prices change. An optimising algorithm for heat accumulator use is shown and commented. Typical working situations are simulated and results presented.


2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3673-3684
Author(s):  
Borna Doracic ◽  
Marino Grozdek ◽  
Tomislav Puksec ◽  
Neven Duic

District heating systems already play an important role in increasing the sustainability of the heating sector and decreasing its environmental impact. However, a high share of these systems is old and inefficient and therefore needs to change towards the 4th generation district heating, which will incorporate various energy sources, including renewables and excess heat of different origins. Especially excess heat from industrial and service sector facilities is an interesting source since its potential has already been proven to be highly significant, with some researches showing that it could cover the heat demand of the entire residential and service sector in Europe. However, most analyses of its utilisation in district heating are not done on the hourly level, therefore not taking into account the variability of its availability. For that reason, the main goal of this work was to analyse the integration of industrial excess heat into the district heating system consisting of different configurations, including the zero fuel cost technologies like solar thermal. Furthermore, cogeneration units were a part of every simulated configuration, providing the link to the power sector. Excess heat was shown to decrease the operation of peak load boiler and cogeneration, that way decreasing the costs and environmental effect of the system. However, since its hourly availability differs from the heat demand, thermal storage needs to be implemented in order to increase the utilisation of this source. The analysis was performed on the hourly level in the energyPRO software


2020 ◽  
Vol 6 (159) ◽  
pp. 36-49
Author(s):  
V. Grankina ◽  
O. Maliavina ◽  
V. Milanko

This article is devoted to improving the efficiency of planning the consumption of material and technical and labor resources and their appropriate planning for heating and non-heating periods, by months of the year based on the calculation of the estimated number of damage to heating pipes, based on the obtained dependences of failure rate. This task is modern and relevant especially in conditions of limited funding of engineering systems. The object of study - the district heating system. The subject of research - pipelines of thermal networks. The purpose of the work is to determine the distribution of damage to the heating network pipelines by months. The research method is statistical modeling of damages of heating network pipelines by months of the year for different terms of their operation. Currently, the reliable operation of district heating systems and their heating networks is one of the main factors in the livelihood of settlements. The reliability of heating network pipelines is determined by the reliability indicators obtained on the basis of data on the damage of heating pipelines. Studying the distribution of the number of damages of heating network pipelines by months depending on the service life of heating pipelines is necessary for effective planning of material, technical and labor resources. In order to increase the efficiency of planning of material and technical and labor resources, it is advisable to calculate the number of damages for the heating and unheated periods, by months of the year, by decades. The calculated dependences of the distribution of damage to the pipelines of heating networks for the heating and non-heating periods on a monthly basis, decadally, should take into account the service life of the pipelines. The results of the above research will save material, technical, labor and energy resources.


2021 ◽  
Vol 246 ◽  
pp. 09003
Author(s):  
Haoran Li ◽  
Juan Hou ◽  
Yuemin Ding ◽  
Natasa Nord

Peak load has significant impacts on the economic and environmental performance of district heating systems. Future sustainable district heating systems will integrate thermal storages and renewables to shave their peak heat demand from traditional heat sources. This article analysed the techno-economic potential of implementing thermal storage for peak load shaving, especially for the district heating systems with waste heat recovery. A campus district heating system in Norway was chosen as the case study. The system takes advantage of the waste heat from the campus data centre. Currently, about 20% of the heating bill is paid for the peak load, and a mismatch between the available waste heat and heat demand was detected. The results showed that introducing water tank thermal storage brought significant effects on peak load shaving and waste heat recovery. Those effects saved up to 112 000 EUR heating bills annually, and the heating bill paid for the peak load could be reduced by 15%. Meanwhile, with the optimal sizing and operation, the payback period of the water tank could be decreased to 13 years. Findings from this study might help the heat users to evaluate the economic feasibility of introducing thermal storage.


2021 ◽  
Vol XXVIII (4) ◽  
pp. 121-132
Author(s):  
Corina Chelmenciuc ◽  
◽  
Constantin Borosan ◽  
Vadim Lisnic ◽  
◽  
...  

Nowadays, both globally and in Europe, and nationally, there is a tendency to promote district heating systems to the detriment of individual ones to heat dwellings in urban areas. The need to develop the DHSs is indisputable considering the topicality of global warming, the depletion of the primary energy resources and the energy efficiency trend. This article presents the method of applying regression analysis in feasibility studies for the projects of new heat consumers connection to the district heating system (hereinafter – DHS) or previously disconnected consumers reconnection via individual heating points (hereinafter – IHP) when the necessary investments are to be borne by the DHS operator, and the thermal energy is produced in cogeneration. At the same time, it is demonstrated that there is a direct and linear correlation between fuel consumption and electricity and heat produced in cogeneration at CHP plant.


2020 ◽  
Vol 4 (1) ◽  
pp. 28-34
Author(s):  

Many traditional heating systems based on fossils face challenges such as lack of investment or unfavorable price regulation, low technical performance, impact on the environment and negative consumer perceptions. The CoolHeating project funded by the EU’s Horizon 2020 program, whose basic features and outcomes are presented in this work, promotes the implementation of small modular renewable heating and cooling grids for communities in South-Eastern Europe, including the town of Visoko as one of five target regions. Core activities, besides techno-economical assessments and social-environmental benefits, include measures to stimulate the interest of communities and citizens to set-up renewable district heating systems. In this work, an analysis was performed for implementation of small modular district heating system in Visoko, covering several public buildings and few neighborhoods in north-western part of town. Combination of different renewable energy sources were analyzed leading to an optimal and a very promising energy supply strategy due to its contribution to security of supply, financial stability, local economic development, local employment, etc. Possible financial savings for heating of 38% compared to current financial needs are determined. Structure optimization of solar collector holders was also performed, taking into account external influence, enabling savings in the structure material. This approach confirms feasibility of transition from traditional to renewable energy based heating system. Having in mind the modularity of such systems, similar solutions can be replicated in other South-Eastern European cities and other countries.


Sign in / Sign up

Export Citation Format

Share Document