scholarly journals Durability vs technical - the usage properties of road pavements

2018 ◽  
Vol 45 ◽  
pp. 00082 ◽  
Author(s):  
Izabela Skrzypczak ◽  
Wojciech Radwański ◽  
Tomasz Pytlowany

Contemporary trends in development and new material and technical solutions for road pavement should consider the permanent increase in the growth of traffic as well as aspects of environmental protection and balanced development. Nowadays, attempts are made towards estimation of the appropriate thickness for pavement construction already in the phase of its design. Flexible pavements are preferred over rigid concrete roads because of their certain advantages, such as they can be strengthened and improved in stages with the growth of traffic. Flexible pavements are less expensive in regards to their initial cost and maintenance. Concrete pavements are nowadays becoming more popular. The largest advantage for using rigid pavement is its durability and ability to hold its shape against traffic and difficult environmental conditions. Although concrete pavement is less expensive, it requires less maintenance and has a good design life. The main objective of this study is to present a comparative review on the suitability of pavement depending on various parameters such as material, loading, longer life, cost effectiveness etc.

2019 ◽  
Vol 12 (1) ◽  
pp. 16
Author(s):  
Marjono ,

One of the factors causing the cracking of rigid pavement surfaces for roadways is the occurrence of tensile stresses due to vehicle wheel loads that exceed the tensile stresses of the concrete, if not handled immediately will affect the service life of pavement construction.This research is conducted to get alternative solution from pavement construction problem, that is damage before end of service period. One of the efforts that can be done is to make a model of pavement construction that can reduce the tensile stress on the underside of the concrete plate by adding a stiffening block on the underside of the concrete plate for road pavement. The results of this study are expected to be one form of innovation from rigid pavement construction that can be applied in Indonesia.  On the basis of this then the researchers took the title "Performance Pavement Pavement Construction Model with the Confession Block".The purpose of this research is to know the effect of the addition of the stiffening block on the pavement construction model with the stiffening block, compared to the pavement model without the stiffening block, in terms of the number of load repetitions and the cracking patterns occurring on the surface of the concrete plate.Pursuant to result of research with experimental method on pavement model with size of width 50 cm, length 50 cm and thickness 3 cm. Data obtained that the performance of pavement model with the stiffening block, able to reduce crack width by 41.82%. Maximum load repetition on pavement model with Type I block 31.33% higher than the maximum load repetition on pavement model without stiff block (Type II). The damage patterns that occur in Type I pavement models, beginning with cracks in the corners, followed by cracking in the middle until the plate is split. For the Type II pavement model, the crack occurs at an angle, and immediately splits.Keywords: rigid pavement, loop load, surface crack, compressive strength


Author(s):  
I. I. Lube ◽  
N. V. Trutnev ◽  
S. V. Tumashev ◽  
A. V. Krasikov ◽  
A. G. Ul’yanov ◽  
...  

At production of pipes of type 13Cr grade steel used at development of oil and gas deposits in areas with aggressive environment, intensive wear of instrument takes place, first of all, piercing mill mandrels. Factors, influencing the resistivity of the piercing mandrels considered, including chemical composition of the material, the mandrel is made of and its design. Based on industrial experience it was shown, that chrome content in the mandrel material practically does not affect on the increase of its resistivity, since the formed thin protective oxides having high melting temperature, are quickly failed and practically are not restored in the process of piercing. To increase the resistivity of piercing mandrels at production of casing tubes of type 13Cr grade steel, a work was accomplished to select a new material for their manufacturing. The chemical composition of steel presented, which was traditionally used for piercing mandrels manufacturing, as well as a steel grade proposed to increase their resistivity. First, molybdenum content was increased, which increases the characteristics of steel strength and ductility at high temperatures and results in grain refining. Second, tungsten content was also increased, which forms carbides in the steel resulting in an increase of its hardness and “red resistivity”, as well as in preventing grains growth during heating. Third, cobalt content was also increased, which increases heat resistivity and shock loads resistivity. The three elements increase enabled to increase the mandrels resistivity by two times. Results of mandrel test of steel 20ХН2МВ3КБ presented, the mandrel having corrugation on the working cone surface, which enabled to reach the resistivity growth to 12 passes without significant change of instrument cost. Microstructure of mandrels made of steels 20Х2Н4МФА and 20ХН2МВ3КБ shown. Application of the centering pin of special design was tested, which provided forming of a rounding edge on the front billet ends, eliminated undercut of mandrel external surface in the process of secondary billet grip and increase the service life of the piercing mill mandrels. At production of seamless pipes of martensite class type 13Cr stainless steels having L80 group of strength, an increase of piercing mandrel resistivity was reached by more than four times, which together with other technical solutions enabled to increase the hourly productivity of the hot rolling section of Volzhsky pipe plant ТПА 159-426 line by more than two times.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 74
Author(s):  
Hatem Alhazmi ◽  
Syyed Adnan Raheel Shah ◽  
Muhammad Aamir Basheer

Rigid pavement structures are one of the costly components of the infrastructure development process. It consumes a huge quantity of ingredients necessary for concrete development. Hence, a newly introduced concept of circular economy in combination with waste management was introduced to solve this problem. In this study, three waste products (rice husk ash (RHA), wood sawdust (WSD), and processes waste tea (PWT)) was utilized to develop the concrete for rigid pavement structures by replacing the sand, i.e., a filler material at different percentages. During the testing procedure of compressive (CS), tensile (TS), and flexural strength (FS) properties, RHA and WSD at 5% replacement were found to be a good replacement of sand to develop required concrete. This study will help in the production of eco-friendly rigid pavement structures and a pathway of life cycle assessment in the future.


2016 ◽  
Vol 687 ◽  
pp. 012055
Author(s):  
M A Romero Farfán ◽  
H E Murillo Vega ◽  
F A Trujillo Pinto

2021 ◽  
Vol 878 (1) ◽  
pp. 012052
Author(s):  
H Ndruru ◽  
R M Simanjuntak ◽  
S P Tampubolon

Abstract The rigid pavement is a pavement construction in which a concrete slab is used as the top layer, which is located above the foundation or directly above the subgrade, without or with an asphalt surface layer. One type of rigid pavement used in Indonesia is rigid pavement without using reinforcement which is usually used in areas with low traffic or residential areas. Pavement without using reinforcement is the small split tensile strength so that the part of the plate will experience cracks due to stresses that cannot be avoided from traffic loads. Therefore, it is necessary to have reinforcement on the concrete slab so that the cracks do not extend. In this research, the use of copper fiber waste from electronic cables as a substitute solution for reinforcement to be used as a mixture in concrete. The experiments were carried out using fiber with variations of 0%, 0.5%, 1%, and 1.5% of the total weight of concrete mixture material and then tested at 28 days of concrete age. This research showed the variation of fiber weight until 1,5% increase the split tensile strength up to 32,46% and the compressive strength up to 9,16%.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Cesare Sangiorgi ◽  
Cecilia Settimi ◽  
Piergiorgio Tataranni ◽  
Claudio Lantieri ◽  
Solomon Adomako

Undoubtedly, the most commonly used method for road maintenance includes the use of winter service vehicles to clear thoroughfares of snow and the spraying of chemicals to prevent ice formation on the road surface. The application of these traditional methods on road and airport pavements possesses numerous environmental, organizational, and technical challenges. To overcome these critical issues, new nontraditional technologies that act within the pavement, thereby increasing its temperature, have been developed. In relation to the heat source used, these are classified into chemical and physical methods. The purpose of this research is to study the temperature variation under the thermal transient process produced by the action of the physically heating device installed in the road pavement. The heating device is a ribbon, made of amorphous material, which is able to produce heat to warm up the pavement and its surface. Based on its principle of operation, it is classified among the nontraditional physical methods for the treatment of snow and ice. In this work, the performance of the heating ribbons on an experimental site at the G. Marconi International Airport in Bologna (Italy) is presented.


Recycling ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 17
Author(s):  
David Vandewalle ◽  
Vítor Antunes ◽  
José Neves ◽  
Ana Cristina Freire

The demand for more sustainable solutions has led an ever-growing number of stakeholders to being committed to pursue the principles of sustainability in pavement management. Different stakeholders have been looking for tools and methodologies to evaluate the environmental impacts of the solutions, for which the life cycle assessment (LCA) proved to be an appropriate methodology. This paper is focused on the LCA of road pavement multi-recycling based on the use of bituminous mixtures with high rates of reclaimed asphalt pavement (RAP). In order to promote the circular economy, a comparative analysis was performed on a road pavement section by taking into account different scenarios, which stem from the combination of production, construction and rehabilitation activities incorporating different RAP rates in new bituminous mixtures: 0% (as reference), 25%, 50%, 75% and 100%, respectively. LCA results have been expressed in terms of four damage categories: human health, ecosystem quality, climate change and resources. Results have shown that both recycled and multi-recycled bituminous mixtures lead to substantial benefits in comparison with the solution employing virgin materials, hence embodying a sustainable approach. The benefits grow with the increase in the RAP rate with an average decrease of 19%, 23%, 31% and 33% in all the impact categories for a 25%, 50%, 75% and 100% of RAP rate.


2020 ◽  
Vol 313 ◽  
pp. 00013
Author(s):  
Matej Brna ◽  
Michal Cingel

Road pavement roughness, in terms of skid resistance, can be described from a geometrical point of view as a texture or from a physical point of view as friction between a tire and a road surface. The paper deals with the comparison of asphalt and concrete pavement surface on selected newly built sections of the D1 motorway near the Ovčiarsko tunnel. Texture measurements were performed with a Static Road Scanner (SRS) capable of recording surface irregularities up to the microtexture level (2.49 µm resolution). A pendulum was used to determine the friction. Subsequently, the texture was evaluated using individual amplitude and wavelength characteristics and the friction was evaluated using the PTV parameter. Finally, correlations were searched between the roughness characteristics of asphalt concrete and cement concrete pavements, but also between texture and friction characteristics.


Sign in / Sign up

Export Citation Format

Share Document