scholarly journals Environmental and social issues on energy policy in indonesia

2018 ◽  
Vol 73 ◽  
pp. 02002
Author(s):  
Sudharto Prawata Hadi ◽  
Bulan Prabawani ◽  
Hartuti Purnaweni

One crucial problem faced by Indonesia is the dependence on fossil energy reaching to 93,3%, while the share of renewable energy is only 7,7%. This causes two implications. Firstly, Indonesia is at the situation of insecurity energy due to the limitation of the availability of fossil energy. Since 2004, Indonesia is net importer oil country. Secondly, the use of fossil energy creates CO2, a component of green house gases stimulating global warming and climate change. One strategy to deal with this problem is by implementing new energy system consisting of developing renewable energy and energy efficiency. This paper observes the impact of the use of fossil energy, the measures taken to deal with these problems and the issues of implementing the measures. This research relies on secondary data available at the Ministry of Energy and Mineral Resource, Ministry of Environment and Forestry specifically at by Proper Secretariat, and other relevant sources.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5046
Author(s):  
Gokula Manikandan Senthil Kumar ◽  
Sunliang Cao

A positive energy system that produces more renewable energy than its demand while ensuring appropriate comfort levels is an excellent path towards increasing the portion of renewable energy, reducing carbon emission, and increasing the energy system’s overall performance. In particular, it has been believed as step forward towards zero energy systems. Recent progress in positive energy building and community levels is gaining interest among different stakeholders. However, an inadequate understanding of the positive energy system is widely noticed in many projects, and a shortage of standard details on the positive energy system still prevails in the research community. Therefore, a state-of-the-art review of positive energy building and community is conducted in this paper. Firstly, this paper begins with the definitions and concepts of positive energy buildings and communities. Secondly, it comprehensively describes the energy supplies, demands, indicators, storage, energy management, roles of stakeholders, and bottlenecks of positive energy systems. Thirdly, the main differences between positive energy buildings and communities are summarized. Fourthly, the impact of smart energy grids and new energy vehicles on the positive energy buildings and communities is derived. As a conclusion, this paper shows that even though all the energy-efficient buildings such as passive buildings, nearly zero energy buildings, zero energy buildings, positive energy buildings look like an up-trending scale of renewable penetration, considerable differences are visible among all, and the same thing applies to the community level. Furthermore, considerable differences exist when comparing between positive buildings and communities regarding both the technical and economic perspectives.


Author(s):  
Marta Stoian

Climate change is an unprecedented challenge in human history. It requires further immediate and concerted action. Understanding the stage of development of each energy resource, as the impact on the energy system to make informed decisions and prescribe a healthy energy future has thus become a priority. Decisions such as the phasing out of fossil fuels and the transition to an efficient and 100% renewable energy system, as well as increasing the storage capacity of greenhouse gases using environmentally sustainable approaches, maintaining natural ecosystems that generate environmental services, and restoring the degraded ones are now a top issue. Therefore, the relationship between energy and environmental policy is becoming essential. Accordingly, this paper will focus on the transition to renewable energy, the adaptation to climate change and the energy transition at EU level being strenuously debated, in order to build a holistic context of the actual situation. Adaptation to climate change requests a complex scientific study, given the diversity of uncertainties involved, and the interconnections between different areas, such as agriculture, sustainable development or energy industry. Therefore, the aim of research is to provide holistic understanding of the current climate issues, according to the mentioned fields. In this context, it is emphasized the benefits of clean energy by investigating the methods for achieving a prolific energy transition, from a conventional to a sustainable one. Carefully analysing the commitments and the transition to a low-carbon electricity system looking behind the causes and studying closely the underlying elements of all these topics, using the qualitative research method as a basis to indulge in further analysis and research, it was outlined a detailed analysis of the current climate context. In conclusion, the effect of the pressure brought into play by human exploitation of goods and services on the ecosystems was associated with the ongoing concerns of environmental degradation, climatic variations, natural and ecological distortions, and financial setbacks. Taking into account the drive toward accomplishing sustainable development and environmental quality, powerful policies are being implemented, but given the variety of investment conditions in each country and including the different characteristics of the financial markets, there is no unique solution that works for everybody. Therefore, the transition to a more sustainable energy system has a verity of implications but it is an essential condition for sustainable development.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1692 ◽  
Author(s):  
Xiaowen Ding ◽  
Lin Liu ◽  
Guohe Huang ◽  
Ye Xu ◽  
Junhong Guo

In recent years, with the increase of annual average temperature and the decrease of annual precipitation in Beijing, the fragility of Beijing’s energy system has become more and more prominent, especially the balance of electricity supply and demand in extreme weather. In the context of unstable supply of new and renewable energies, it is imperative to strengthen the ability of the energy system to adapt to climate change. This study first simulated climate change in Beijing based on regional climate data. At the same time, the Statistical Program for Social Sciences was used to perform multiple linear regression analysis on Beijing’s future power demand and to analyze the impact of climate change on electricity supply in both the RCP4.5 and RCP8.5 (representative concentration pathway 4.5 and 8.5) scenarios. Based on the analysis of the impact of climate change on energy supply, a multi-objective optimization model for new and renewable energy structure adjustment combined with climate change was proposed. The model was then used to predict the optimal power generation of the five energy types under different conditions in 2020. Through comparison of the results, it was found that the development amount and development ratio of various energy forms underwent certain changes. In the case of climate change, the priority development order of new and renewable energies in Beijing was: external electricity > other renewable energy > solar energy > wind energy > biomass energy. The energy structure adjustment program in the context of climate change will contribute to accelerating the development and utilization of new and renewable energies, alleviating the imbalance between power supply and demand and improving energy security.


2017 ◽  
Author(s):  
Sri Rum Giyarsih

Global warming is the increase in the average temperature of the Earth’s surface. According to the IPCC (Intergovernmental Panel on Climate Change) average temperature of the Earth’s surface was global warming is the increase in the average temperature of the 0.74 ± 0.18 0C (1.33 ± 0.32 F) over the last hundred years. The impact of rising temperatures is the climate change effect on agricultural production. If the community does not craft made adaptation to global warming will have an impact on food security. This research aims to know the society’s adaptation to food security as a result of global warming and to know the influence of global warming on food security. The research was carried out based on survey methods. The influence of global warming on food security is identified with a share of household food expenditure and the identification of rainfall. Sampling was done by random sampling. The Data used are the primary and secondary data. Primary Data obtained through structured interviews and depth interview using a questionnaire while the secondary data retrieved from publication data of the Central Bureau Statistics B(BPS), Department of Agriculture and Climatology Meteorology and Geophysics (BMKG). The expected results of the study is to know variations of food security due to global warming in Kulon Progo Regency. Comprehensive knowledge through community participation and related Government increased food security that is used as the basis for drafting the model society’s adaptation to the impacts of global warming.


Author(s):  
Dilara Gulcin Caglayan ◽  
Heidi Ursula Heinrichs ◽  
Detlef Stolten ◽  
Martin Robinius

The transition towards a renewable energy system is essential in order to reduce greenhouse gas emissions. The increase in the share of variable renewable energy sources (VRES), which mainly comprise wind and solar energy, necessitates storage technologies by which the intermittency of VRES can be compensated for. Although hydrogen has been envisioned to play a significant role as a promising alternative energy carrier in a future European VRES-based energy concept, the optimal design of this system remains uncertain. In this analysis, a hydrogen infrastructure is posited that would meet the electricity and hydrogen demand for a 100% renewable energy-based European energy system in the context of 2050. The overall system design is optimized by minimizing the total annual cost. Onshore and offshore wind energy, open-field photovoltaics (PV), rooftop PV and hydro energy, as well as biomass, are the technologies employed for electricity generation. The electricity generated is then either transmitted through the electrical grid or converted into hydrogen by means of electrolyzers and then distributed through hydrogen pipelines. Battery, hydrogen vessels and salt caverns are considered as potential storage technologies. In the case of a lull, stored hydrogen can be re-electrified to generate electricity to meet demand during that time period. For each location, eligible technologies are introduced, as well as their maximum capacity and hourly demand profiles, in order to build the optimization model. In addition, a generation time series for VRES has been exogenously derived for the model. The generation profiles of wind energy have been investigated in detail by considering future turbine designs with high spatial resolution. In terms of salt cavern storage, the technical potential for hydrogen storage is defined in the system as the maximum allowable capacity per region. Whether or not a technology is installed in a region, the hourly operation of these technologies, as well as the cost of each technology, are obtained within the optimization results. It is revealed that a 100 percent renewable energy system is feasible and would meet both electricity demand and hydrogen demand in Europe.


Author(s):  
Nwakor Flora Ngozi ◽  
Amadi C. Okey ◽  
Okwusi Moses Chukwunwike ◽  
Adiele Ezekiel Chinyere

Climate change is a global problem affecting agricultural production, a good adaptation strategy for this phenomena should be sought for increase agricultural production. The study was conducted in Nigeria to assess the Impact of Climate Change on root and tuber crops production among farmers in Nigeria. Secondary data were used for the study, they were collected from NRCRI Umudike and other individual publications. The result shows that climate change had negative impact on root and tubers crops production including potato. Adaptation of Agriculture to climate change in the areas of crop and animal production, post harvest activities and capacity building, divers friction of livelihood sources through the use of different farming methods and improved agricultural practices will help to reduce the impact of climate change. Examples are establishment of forestry, generation of improved and disease resistance crop varieties addition of value into agricultural products and post harvest activities for climate change adaptation and sustainable development.


2019 ◽  
Vol 16 (4) ◽  
pp. 379-406 ◽  
Author(s):  
Alex Rialp-Criado ◽  
Seyed Meysam Zolfaghari Ejlal Manesh ◽  
Øystein Moen

Purpose This paper aims to elaborate on the crucial effects that a seemingly detrimental policy change in Spain has had on the international entrepreneurial activities of domestic renewable energy (RE) firms. Design/methodology/approach Primary data were collected from nine RE companies in Spain and then triangulated with secondary data and interviews from informants in other local institutions. Findings Domestic RE firms, due to an institutional scape driver action, reacted to an increasingly uncertain and generally more adverse renewable energy policy framework in this country by preferring to internationalise towards foreign markets that had lower political uncertainty than the domestic one. Research limitations/implications This paper complements previous research primarily on firm-specific factors that enhance internationalising firms’ survival and growth through a focus on the impact of a changing institutional-political environment at the home country-level. Practical implications Practitioners in the RE sector should analyse the risk of focusing only on the home market, as it can be too dependent on uncontrolled variations in domestic energy policy. Social implications The findings indicate that a more stable and supportive, long-term perspective in the domestic RE policy is essential for the sustained growth and development of this emerging industry. Originality/value To analyse the strategy by which a number of purposefully selected companies were able to use international expansion as a survival-seeking strategy against a drastic policy-level change in the domestic RE market.


2019 ◽  
Vol 11 (21) ◽  
pp. 5918
Author(s):  
Gianoli ◽  
Bhatnagar

The impact of climate change dynamics has a multiplicative effect when the interlinkages between water and energy are considered. This also applies to climate change co-benefits that derive from adaptation and mitigation initiatives implemented at the urban level and that address the water-energy nexus. A better understanding of the water-energy nexus is a precondition for integrated resource planning that optimizes the use of scarce resources. Against this background, the paper assesses the potential impact of water-energy saving technologies (WEST) on the water-energy nexus of Cuenca, Ecuador, focusing on how vulnerability to climate change may affect the water metabolic cycle of the urban area. Water-energy saving technologies such as rainwater harvesting, solar water heaters, and micro water turbines, reduce water-related energy consumption and mitigate greenhouse gases emissions; thereby illustrating the potential to generate climate change mitigation and adaptation co-benefits. The paper relies on primary data collected through interviews and a survey as well as secondary data in order to assess the extent to which water-energy saving technologies influence the water-energy nexus in Cuenca’s urban water metabolic cycle. Within the context of climate change, the paper develops a business-as-usual scenario and assesses how this is modified by the implementation of water-energy saving technologies.


2019 ◽  
Vol 51 (2) ◽  
pp. 114-140 ◽  
Author(s):  
Juliette N. Rooney-Varga ◽  
Florian Kapmeier ◽  
John D. Sterman ◽  
Andrew P. Jones ◽  
Michele Putko ◽  
...  

Background. We describe and provide an initial evaluation of the Climate Action Simulation, a simulation-based role-playing game that enables participants to learn for themselves about the response of the climate-energy system to potential policies and actions. Participants gain an understanding of the scale and urgency of climate action, the impact of different policies and actions, and the dynamics and interactions of different policy choices. Intervention. The Climate Action Simulation combines an interactive computer model, En-ROADS, with a role-play in which participants make decisions about energy and climate policy. They learn about the dynamics of the climate and energy systems as they discover how En-ROADS responds to their own climate-energy decisions. Methods. We evaluated learning outcomes from the Climate Action Simulation using pre- and post-simulation surveys as well as a focus group. Results. Analysis of survey results showed that the Climate Action Simulation increases participants’ knowledge about the scale of emissions reductions and policies and actions needed to address climate change. Their personal and emotional engagement with climate change also grew. Focus group participants were overwhelmingly positive about the Climate Action Simulation, saying it left them feeling empowered to make a positive difference in addressing the climate challenge. Discussion and Conclusions. Initial evaluation results indicate that the Climate Action Simulation offers an engaging experience that delivers gains in knowledge about the climate and energy systems, while also opening affective and social learning pathways.


Sign in / Sign up

Export Citation Format

Share Document