scholarly journals Materials science aspects of stress corrosion cracking of Russian pipelines

2019 ◽  
Vol 121 ◽  
pp. 04014
Author(s):  
M.M. Kantor ◽  
V.V. Sudin ◽  
K.A. Solntsev

The work describes the features of stress corrosion cracking (SCC) on Russian gas pipelines. The influence of metal parameters of pipelines on the propagation of SCC is described. The main diagnostic features of SCC used for identification of this type of fracture, the stages of crack growth and the effect of microstructural metal parameters on their propagation are described. Accounting methods for main features crack initiation and growth in order to improve the resistance of the main pipelines metal to SCC are proposed

Author(s):  
Edward Friedman

First-order reliability methodology (FORM) is used to develop reliability-based design factors for deterministic analyses of stress corrosion cracking. The basic elements of FORM as applied to structural reliability problems are reviewed and then employed specifically to stress corrosion cracking evaluations. Failure due to stress corrosion cracking is defined as crack initiation followed by crack growth to a critical depth. The stress corrosion cracking process is thus represented in terms of a crack initiation time model and a crack growth rate model, with the crack growth rate integrated from the initiation time to the time at which the crack grows to its critical depth. Both models are described by log-normal statistical distribution functions. A procedure is developed to evaluate design factors that are applied to the mean values of the crack initiation time and the crack growth rate for specified temperature and stress conditions. The design factors, which depend on the standard deviations of the statistical distributions, are related to a target reliability, which is inversely related to an acceptable probability of failure. The design factors are not fixed, but are evaluated on a case-to-case basis for each application. The use of these design factors in a deterministic analysis assures that the target reliability will be attained and the corresponding acceptable probability of failure will not be exceeded. An example problem illustrates use of this procedure.


Author(s):  
Toby Fore ◽  
Stefan Klein ◽  
Chris Yoxall ◽  
Stan Cone

Managing the threat of Stress Corrosion Cracking (SCC) in natural gas pipelines continues to be an area of focus for many operating companies with potentially susceptible pipelines. This paper describes the validation process of the high-resolution Electro-Magnetic Acoustical Transducer (EMAT) In-Line Inspection (ILI) technology for detection of SCC prior to scheduled pressure tests of inspected line pipe valve sections. The validation of the EMAT technology covered the application of high-resolution EMAT ILI and determining the Probability Of Detection (POD) and Identification (POI). The ILI verification process is in accordance to a API 1163 Level 3 validation. It is described in detail for 30″ and 36″ pipeline segments. Both segments are known to have an SCC history. Correlation of EMAT ILI calls to manual non-destructive measurements and destructively tested SCC samples lead to a comprehensive understanding of the capabilities of the EMAT technology and the associated process for managing the SCC threat. Based on the data gathered, the dimensional tool tolerances in terms of length and depth are derived.


Author(s):  
Frank Y. Cheng

A thermodynamic model was developed to determine the interactions of hydrogen, stress and anodic dissolution at the crack-tip during near-neutral pH stress corrosion cracking in pipelines. By analyzing the free-energy of the steel in the presence and absence of hydrogen and stress, it is demonstrated that a synergism of hydrogen and stress promotes the cracking of the steel. The enhanced hydrogen concentration in the stressed steel significantly accelerates the crack growth. The quantitative prediction of the crack growth rate in near-neutral pH environment is based on the determination of the effect of hydrogen on the anodic dissolution rate in the absence of stress, the effect of stress on the anodic dissolution rate in the absence of hydrogen, the synergistic effect of hydrogen and stress on the anodic dissolution rate at the crack-tip and the effect of the variation of hydrogen concentration on the anodic dissolution rate.


Author(s):  
Frederick W. Brust ◽  
Paul M. Scott

There have been incidents recently where cracking has been observed in the bi-metallic welds that join the hot leg to the reactor pressure vessel nozzle. The hot leg pipes are typically large diameter, thick wall pipes. Typically, an inconel weld metal is used to join the ferritic pressure vessel steel to the stainless steel pipe. The cracking, mainly confined to the inconel weld metal, is caused by corrosion mechanisms. Tensile weld residual stresses, in addition to service loads, contribute to PWSCC (Primary Water Stress Corrosion Cracking) crack growth. In addition to the large diameter hot leg pipe, cracking in other piping components of different sizes has been observed. For instance, surge lines and spray line cracking has been observed that has been attributed to this degradation mechanism. Here we present some models which are used to predict the PWSCC behavior in nuclear piping. This includes weld model solutions of bimetal pipe welds along with an example calculation of PWSCC crack growth in a hot leg. Risk based considerations are also discussed.


2018 ◽  
Vol 4 (1) ◽  
pp. 179
Author(s):  
Y A Perlovich ◽  
I V Ryakhovskikh ◽  
M G Isaenkova ◽  
O A Krymskaya ◽  
N S Morozov ◽  
...  

.


2018 ◽  
Author(s):  
Sorabh Singhal ◽  
Yogeshwar Jasra ◽  
Ravindra K. Saxena

In the present work, Stress corrosion cracking (SCC) and its mechanical behavior are presented. SCC represents complex behavior due to electrochemical and mechanical interaction. Damage models are proposed to predict crack initiation time for stainless steel under constant load using the concept of continuum damage mechanics to show incremental damage accumulation which finally leads to failure of the material. Two damage models applicable to prediction of damage in SCC, Lemaitre damage model and damage driving force model proposed by Kamaya are compared. The comparative study of the results obtained by these damage models shows that in Lemaitre damage law cracks initiate randomly while in damage driving force model the stress concentration occurs around the periphery of damaged element results in increased damage force. The study can be used to estimate the crack initiation time in SCC under corrosive atmosphere.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Rehmat Bashir ◽  
He Xue ◽  
Rui Guo ◽  
Yueqi Bi ◽  
Muhammad Usman

The structural integrity analysis of nuclear power plants (NPPs) is an essential procedure since the age of NPPs is increasing constantly while the number of new NPPs is still limited. Low-cyclic fatigue (LCF) and stress corrosion cracking (SSC) are the two main causes of failure in light-water reactors (LWRs). In the last few decades, many types of research studies have been conducted on these two phenomena separately, but the joint effect of these two mechanisms on the same crack has not been discussed yet though these two loads exist simultaneously in the LWRs. SCC is mainly a combination of the loading, the corrosive medium, and the susceptibility of materials while the LCF depends upon the elements such as compression, moisture, contact, and weld. As it is an attempt to combine SCC and LCF, this research focuses on the joint effect of SCC and LCF loading on crack propagation. The simulations are carried out using extended finite element method (XFEM) separately, for the SCC and LCF, on an identical crack. In the case of SCC, da/dt(mm/sec) is converted into da/dNScc (mm/cycle), and results are combined at the end. It has been observed that the separately calculated results for SCC da/dNScc and LCF da/dNm of crack growth rate are different from those of joint/overall effect,  da/dNom. By applying different SCC loads, the overall crack growth is measured as SCC load becomes the main cause of failure in LWRs in some cases particularly in the presence of residual stresses.


CORROSION ◽  
2004 ◽  
Vol 60 (3) ◽  
pp. 229-236 ◽  
Author(s):  
M. Yamamoto ◽  
J. Kuniya ◽  
S. Uchida

Abstract Uniaxial constant load (UCL) tests of the nickel-based alloy X750 (UNS N07550) were performed in high-temperature pure water (288°C, 8 ppm dissolved oxygen [DO]) to investigate stress corrosion cracking (SCC) fracture time and the crack initiation process. The SCC fracture was initiated at a stress level below the 0.2% offset yield stress and many small cracks were observed in the middle of the nonfractured test specimens. The distribution of the crack length for each observation time is shown by Weibull probability distributions. Crack initiation and propagation process had different behavior depending on the applied stress level and the stress intensity factor at the crack tip. SCC initiation at the minimum applied stress is discussed with respect to the grain size, which depended on the size of an initial crack.


Sign in / Sign up

Export Citation Format

Share Document