scholarly journals Transient behavior of a plate-fin-and-tube heat exchanger taking into account different heat transfer coefficients on the individual tube rows

2019 ◽  
Vol 137 ◽  
pp. 01036
Author(s):  
Dawid Taler ◽  
Jan Taler ◽  
Katarzyna Wrona

Plate-fin and tube heat exchangers (PFTHE) are made of round, elliptical, oval or flat tubes to which continuous fins ( lamellas) are attached. Liquid flows inside the tubes and gas flows outside the tubes perpendicularly to their axes and parallel to the surface of continuous fins. Experimental studies of multi-row plate-fin and tube heat exchangers show that the highest average heat transfer coefficient on the air side occurs in the first row of tubes when the air velocity in front of the exchanger is less than approximately 3.5 m/s when a Reynolds number based on an equivalent hydraulic diameter equal to the distance between tube rows in the direction of air flow is less than 10,000. In the subsequent rows of tubes up to about the fourth row the heat transfer coefficient decreases. In the fifth and further rows, it can, that the heat transfer coefficient is equal in each tube row. It is necessary to find the relationships for the air-side Nusselt number on each tube row to design a PFTHE with the appropriate number of tube rows. The air-side Nusselt number correlations can be determined experimentally or by CFD modeling (Computational and Fluid Dynamics). The paper presents a new mathematical model of the transient operation of PFTHE, considering that the Nusselt numbers on the air side of individual tube rows are different. The heat transfer coefficient on an analyzed tube row was determined from the equality condition of mass- average air temperature differences on a given tube row determined using the analytical formula and CFD modeling. The results of numerical modeling were compared with the results of the experiments.

2019 ◽  
Vol 128 ◽  
pp. 04001
Author(s):  
Dawid Taler ◽  
Jan Taler ◽  
Katarzyna Wrona

Experimental studies of multi-row plate-fin heat exchangers show that the highest average heat transfer coefficient on the air side occurs in the first row of tubes when the air velocity in front ofthe exchanger is less thanapproximately 3.5 m/s. In the subsequent rows of tubes up to about the fourth row the heat transfer coefficient decreases. In the fifth and further rows, it can be assumed that the heat transfer coefficient is equal in each tube row. It is necessary to find the relationships fortheair–side Nusselt number on each tube row to design a plate–fin and tube heat exchanger(PFTHE) with the appropriate number of tube rows. The air–side Nusselt number correlations canbe determined experimentally or by CFD modeling (Computational and Fluid Dynamics). The paper presents a newmathematical model of the transient operation of PFTHE, considering that the Nusselt numbers on the air side of individual tube rows are different. The heat transfer coefficient on an analyzed tube row was determined from the equality condition of mass– average air temperature differences on agiven tube row determined using the analytical formula and CFD modeling. The results of numerical modelingwere compared with the results of the experiments.


Author(s):  
Djamalutdin Chalaev ◽  
◽  
Nina Silnyagina ◽  

The use of advanced heat transfer surfaces (corrugated tubes of various modifications) is an effective way to intensify the heat transfer and improve the hydraulic characteristics of tubular heat exchangers. The methods for evaluating the use of such surfaces as working elements in tubular heat exchangers have not been developed so far. The thermal and hydrodynamic processes occurring in the tubes with the developed surfaces were studied to evaluate the efficiency of heat exchange therein. Thin-walled corrugated flexible stainless steel tubes of various modifications were used in experimental studies. The researches were carried out on a laboratory stand, which was designed as a heat exchanger type "tube in tube" with a corrugated inner tube. The stand was equipped with sensors to measure the thermal hydraulic flow conditions. The comparative analysis of operation modes of the heat exchanger with a corrugated inner tube of various modifications and the heat exchanger with a smooth inner tube was performed according to the obtained data. Materials and methods. A convective component of the heat transfer coefficient of corrugated tube increased significantly at identical flow conditions comparing with a smooth tube. Increasing the heat transfer coefficient was in the range of 2.0 to 2.6, and increased with increasing Reynolds number. The increase in heat transfer of specified range outstripped the gain of hydraulic resistance caused by increase of the flow. Results and discussion. CFD model in the software ANSYS CFX 14.5 was adapted to estimate the effect of the tube geometry on the intensity of the heat transfer process. A two-dimensional axially symmetric computer model was used for the calculation. The model is based on Reynolds equation (Navier-Stokes equations for turbulent flow), the continuity equation and the energy equation supplemented by the conditions of uniqueness. SST-turbulence model was used for the solution of the equations. The problem was solved in the conjugate formulation, which allowed assessing the efficiency of heat exchange, depending on various parameters (coolant temperature, coolant velocity, pressure). The criteria dependences were obtained Nu = f (Re, Pr). Conclusions. The use a corrugated tube as a working element in tubular heat exchangers can improve the heat transfer coefficient of 2.0 - 2.6 times, with an increase in hydraulic resistance in the heat exchanger of 2 times (compared with the use of smooth tubes). The criteria dependences obtained on the basis of experimental studies and mathematical modeling allow developing a methodology for engineering calculations for the design of new efficient heat exchangers with corrugated tubes.


1983 ◽  
Vol 105 (4) ◽  
pp. 878-883 ◽  
Author(s):  
A. Haji-Sheikh ◽  
M. Mashena ◽  
M. J. Haji-Sheikh

An analytical method for the numerical calculation of the heat transfer coefficient in arbitrarily shaped ducts with constant wall temperature at the boundary is presented. The flow is considered to be laminar and fully developed, both thermally and hydrodynamically. The method presented herein makes use of Galerkin-type functions for computation of the Nusselt number. This method is applied to circular pipes and ducts with rectangular, isosceles triangular, and right triangular cross sections. A three-term or even a two-term solution yields accurate solutions for circular ducts. The situation is similar for right triangular ducts with two equal sides. However, for narrower ducts, a larger number of terms must be used.


2017 ◽  
Vol 9 (4) ◽  
pp. 451-461
Author(s):  
Artur Rubcov ◽  
Sabina Paulauskaitė ◽  
Violeta Misevičiūtė

The paper provides the results of experimental and theoretical test of a wavy fin and tube heat exchanger used to cool air in a ventilation system when the wavy fin of the heat exchanger is dry and wet. The experimental tests, performed in the range of 1000<Re<4500 of the Reynolds number applying LMTD-LMED methodology, determined the dependency of the heat transfer coefficient on the supplied air flow rate with the varying geometry of the heat exchanger (the number of tube rows, the distance between fins, the thickness of the fin and the diameter of the tube). The experimental tests were performed on 9 heat exchangers in heating and 6 heat exchangers in cooling mode. After processing the results of the experimental tests, empirical equation defining the characteristics of the heat transfer coefficient of all heat exchangers were derived. The maximum heat transfer coefficient deviation is 11.6 percent. The correction factor of the wet fin (Lewis number) depending on the number of Reynolds, which ranges from 0.75 to 1.1 also is determined. Maximum capacity deviation equals 3.7 percent. The obtained equations can only be applied to a certain group of heat exchangers (with the same shape of fins or the distance between the tubes). The results of the experimental test and simulation with ANSYS program are compared and the heat transfer coefficients vary from 6.5 to 11.4 percent.


2011 ◽  
Vol 71-78 ◽  
pp. 2577-2580 ◽  
Author(s):  
Hui Fan Zheng ◽  
Jing Bai ◽  
Jing Wei ◽  
Lan Yu Huang

Based on the EES software, a heat transfer coefficient calculation program about double pipe heat exchanges is established. Some experimental data are compared to the simulation data for proving that the program can predict the heat transfer coefficient of the double pipe heat exchangers, and then the change of heat transfer coefficient is calculated and analyzed with relevant parameters. The results show that the heat transfer coefficient of heat exchanger are increasing with the flow of the shell side, the tube side and the logarithmic mean temperature difference, and when the temperature difference equals to 12°C, the total heat transfer coefficient can up to 2400W/m2.K or so.


Author(s):  
L. V. Plotnikov ◽  
Yu. M. Brodov ◽  
B. P. Zhilkin ◽  
A. M. Nevolin ◽  
M. O. Misnik

Thermomechanical perfection of intake and exhaust systems largely determine the efficiency of the working process of reciprocating engines (ICE). The article presents the results of numerical simulation and experimental study of the heat transfer of gas flows in profiled gas- air systems of ICEs. A description of the numerical simulation technique, experimental setup, configurations of the studied hydraulic systems, measuring base and features of the experiments are given. On the basis of numerical modeling, it has been established that the use of profiled sections with cross sections in the shape of a square or a triangle in exhaust systems of an ICEs leads to a decrease in the heat transfer coefficient by 5-11%. It is shown that the use of similar profiled sections in the intake system of reciprocating engines also leads to a decrease in the heat transfer coefficient to 10 % at low air flow rates (up to 40 m/s) and an increase in the heat transfer coefficient to 7% at high speeds. Experimental studies qualitatively confirm the simulation results.


2021 ◽  
Author(s):  
Deogratius Kisitu ◽  
Alfonso Ortega

Abstract Impingement split flow liquid-cooled microchannel cold plates are one of several flow configurations used for single-phase liquid cooling. Split flow or top-in/side-exit (TISE) cold plates divide the flow into two branches thus resulting in halved or reduced flow rates and flow lengths, compared to traditional side-in /side-exit (SISE) or parallel flow cold plates. This has the effect of reducing the pressure drop because of the shorter flow length and lower flow rate and increasing the heat transfer coefficient due to thermally developing as opposed to fully developed flow. It is also claimed that the impinging flow increases the heat transfer coefficient on the base plate in the region of impingement. Because of the downward impinging and turning flow, there are no exact analytical models for this flow configuration. Computational and experimental studies have been performed, but there are no useful compact analytical models in the literature that can be used to predict the performance of these impingement cold plates. Results are presented for novel physics-based laminar flow models for a TISE microchannel cold plate based on an equivalent parallel channel flow approach. We show that the new models accurately predict the thermal-hydraulic performance over a wide range of parameters.


2021 ◽  
Vol 15 (2) ◽  
pp. 7936-7947
Author(s):  
Yamina Abdoune ◽  
Sahel Djamel ◽  
Benzeguir Redouane ◽  
Alem Karima

The forced convective heat transfer behavior of a turbulent air flow, steady and Newtonian over a fin and oval-tube heat exchanger has been examined numerically. Where, the effect of the tube tilt angle (α) on the heat transfer coefficient and the friction factor was tested. The inclination angle of the oval-tubes going from 0° (Baseline case) to 90° with a step of 10°. The fluid flows and heat transfer characteristics are presented for Reynolds numbers ranging from 3.000 to 12.000. All investigations are carried out with the help of the CFD ANSYS Fluent. Heat transfer coefficient results in the term of the Nusselt number are validated with the available experimental data and a maximum deviation of 9 % is observed. Reasonable agreement is found. The obtained results show that the tube's inclination angle of 20° is the best design which significantly removes the hot spots behind the tubes, thus giving an increase in the heat transfer coefficient of 13 % compared to the baseline case. In addition, useful correlations are developed to predict Nusselt number and friction factor in the fin and oval-tube heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document