scholarly journals Calculation of fire resistance of building structures in software packages

2019 ◽  
Vol 91 ◽  
pp. 02007 ◽  
Author(s):  
Ivan Dmitriev ◽  
Vladimir Lyulikov ◽  
Olga Bazhenova ◽  
Dmitry Bayanov

In the article a review of modern software systems allowing calculating the distribution of temperature fields in a structure in time, without loading and with it (the fire resistance limit of structures) under conditions of a special fire load has been given. The algorithm of the finite element method is used for the calculations, on which each of the considered complexes is based. Specifically: Sofistik, Abaqus, Normcad, Ansys, Robot structure. Comparative analysis has been made from the point of view of intuitive user interface, the possibilities of modeling various conditions and fire regimes, tools for communication with other software complexes and the format of output of results. The results demonstrating the capabilities of the post-processor Sofistik have been presented.

2018 ◽  
Vol 193 ◽  
pp. 03026 ◽  
Author(s):  
Marina Gravit ◽  
Vladimir Lyulikov ◽  
Alina Fatkullina

The review of modern software systems that allow producing modeling and calculation of fire resistance of building structures, as well as simulating fire protection, is given. Particular attention is paid to the software Sofistik, which allows you to synchronize with Autodesk Revit and calculate the fire protection of building structures for various temperature regimes.


2021 ◽  
Vol 21 (3) ◽  
pp. 260-267
Author(s):  
A. V. Maistrenko

Introduction. The thermal calculation of a volumetric structure using the finite element method is considered. According to the plans of the Ministry of Energy of the Russian Federation, a powerful wind energy industry will be created in the country in the coming years. In this regard, calculations in the production of building structures of wind power plants are currently becoming a challenge. The production of such fiberglass structures is a complex thermochemical process, including the polymerization of the binder under strictly specified thermal conditions. The work objective is to develop a method for three-dimensional finite element calculation of the non-stationary heating mode of a complexshaped composite structure.Materials and Methods. The determination of the temperature fields of a complex-shaped structure made of inhomogeneous materials causes using numerical methods and, first of all, the finite element method. The finite element modeling of the behavior of composite materials under molding is still incomplete. For its partial solution, the well-known heat conduction equation is adapted for a specific problem based on the first law of thermodynamics. New finite element models describing the thermal fields in the structure during its manufacture are proposed. The accuracy of modeling thermal processes is specified. Numerical simulation of heating is carried out.Results. The solution to the problem was performed in the multifunctional software complex ANSYS with the implementation of the calculation method in the parametric programming language APDL. The temperature fields of the blade elements of wind power plants at the stage of their manufacture were calculated, which made it possible to identify the characteristic features of the production process of these structures and to obtain recommendations for clarifying the process of their gluing.Discussion and Conclusions. The results obtained can be used in thermal calculations of elements of complex layered structures made of composite materials in wind power, mechanical engineering, aircraft, shipbuilding, instrumentation, etc.


1979 ◽  
Vol 6 (4) ◽  
pp. 617-628 ◽  
Author(s):  
T. T. Lie

A mathematical model is described that enables the evaluation of the expected fire cost and life losses for buildings. Optimum safety factors for fire loads are derived by minimizing the fire cost expectation, subject to a constraint on expected life losses. A sensitivity study shows the important variables that determine the optimum fire load safety factor. Results are compared with code requirements and suggestions are made for improving fire resistance design from the point of view of safety and cost.


2018 ◽  
Vol 230 ◽  
pp. 02022
Author(s):  
Oleksandr Nuianzin ◽  
Mykola Kryshtal ◽  
Artem Nesterenko ◽  
Dmytro Kryshtal ◽  
Taras Samchenko

Simulation, as a method of scientific research, makes it possible, without performing costly and labor-intensive field experiments on models, to carry out all necessary experiments to determine the temperature modes of fire in cable tunnels. The purpose of the research of this work was to determine the temperature regime of fire in a cable tunnel depending on its shape, size and fire load. Mathematical models of cable tunnels were created in one of the CFD software systems. Cable products are constantly evolving and improving. For tests on the fire resistance of building structures of cable tunnels, a standard temperature mode of fire is used which may not correspond to fire mode in a real cable tunnel. The computational experiments were carried out and the temperature regimes of fires in tunnels with different parameters were determined. The obtained results showed the parameters of cable tunnels, which influence the temperature regime of fire in tunnels most. In this paper the use of computational experiments for the study of heat and mass transfer processes in fires in cable tunnels was examined further. CFD Fire Dynamics Simulator 6.2 was used.


Author(s):  
A. Baronnet ◽  
M. Amouric

The origin of mica polytypes has long been a challenging problem for crystal- lographers, mineralogists and petrologists. From the petrological point of view, interest in this field arose from the potential use of layer stacking data to furnish further informations about equilibrium and/or kinetic conditions prevailing during the crystallization of the widespread mica-bearing rocks. From the compilation of previous experimental works dealing with the occurrence domains of the various mica "polymorphs" (1Mr, 1M, 2M1, 2M2 and 3T) within water-pressure vs temperature fields, it became clear that most of these modifications should be considered as metastable for a fixed mica species. Furthermore, the natural occurrence of long-period (or complex) polytypes could not be accounted for by phase considerations. This highlighted the need of a more detailed kinetic approach of the problem and, in particular, of the role growth mechanisms of basal faces could play in this crystallographic phenomenon.


2021 ◽  
pp. 12-17
Author(s):  
Юрий Николаевич Шебеко ◽  
Алексей Юрьевич Шебеко

Проведен краткий анализ понятий, связанных с расчетом пределов огнестойкости строительных конструкций. Дано определение термина «фактический предел огнестойкости», которое отсутствует в нормативных документах по пожарной безопасности. Отмечено, что это связано с использованием на практике значений пределов огнестойкости, определенных для стандартных температурных режимов пожара, в то время как на практике указанные температурные режимы, как правило, отличаются от стандартных. Предложена концепция определения фактического предела огнестойкости, основанная на моделировании воздействия на строительную конструкцию температурного режима реального пожара (например, с помощью программного комплекса FDS 6). The brief analysis of definitions connected with estimation of fire resistance limits of building structures is conducted. There is given the determination of term “actual fire resistance limit” that is absent in fire safety normative documents. It is caused by practical application of the fire resistance limits determined for standard temperature regimes of fires only, but at the same time the temperature regimes of real fires as a rule differ from the standard regimes. There is proposed the method for determination of the actual fire resistance limit based on the modeling of influence of the real fire temperature regime on buildings structures. This modeling can be made by an application of CFD methods (for example, with the help of FDS 6 software complex). The required reliability of the building structure is considered. The proposed method can solve the problem of practical applicability of certain structural unit during designing buildings and structures, for which the use of the resistance limits obtained for the standard fire temperature regimes can lead to unjustified economic expenditures without an appropriate elevation of fire safety level of the object.


Author(s):  
A Meghdari ◽  
R Davoodi ◽  
F Mesbah

This paper presents an engineering analysis of shoulder dystocia (SD) in the human birth process which usually results in damaging the brachial plexus nerves and the humerus and/or clavicle bones of the baby. The goal is to study these injuries from the mechanical engineering point of view. Two separate finite element models of the neonatal neck and the clavicle bone have been simulated using eight-node three-dimensional elements and beam elements respectively. Simulated models have been analysed under suitable boundary conditions using the ‘SAP80’ finite element package. Finally, results obtained have been verified by comparing them with published clinical and experimental observations.


2009 ◽  
Vol 50 ◽  
Author(s):  
Jérémy Besson ◽  
Albertas Čaplinskas

In the last decade the component technologies have evolved from object-oriented to serviceoriented ones. Services are seen as utilities based on a pay-for-use model. This model requires providing and guaranteeinga certain Quality of Service (QoS). However, QoS and even a service itself can be defined and understood in many different ways. It is by far not obvious which of these approaches and in what extent they should be used when developing service-oriented software systems. This paper analyzes the notion of QoS namely from this point of view.


Author(s):  
Xilu Zhao ◽  
Chenghai Kong ◽  
Yang Yang ◽  
Ichiro Hagiwara

Abstract Current vehicle energy absorbers face two problems during a collision in that there is only a 70% collapse in length and there is a high initial peak load. These problems arise because the presently used energy-absorbing column is primitive from the point of view of origami. We developed a column called the Reversed Spiral Origami Structure (RSO), which solves the above two problems. However, in the case of existing technology of the RSO, the molding cost of hydroforming is too expensive for application to a real vehicle structure. We therefore conceive a new structure, named the Reversed Torsion Origami Structure (RTO), which has excellent energy absorption in simulation. We can thus develop a manufacturing system for the RTO cheaply. Excellent results are obtained in a physical experiment. The RTO can replace conventional energy absorbers and is expected to be widely used in not only automobile structures but also building structures.


Fire Safety ◽  
2019 ◽  
pp. 5-9
Author(s):  
O. I. Bashynskiy ◽  
M. Z. Peleshko ◽  
T. G. Berezhanskiy

The article is dedicated to the fire resistance limit of building structures of the objects for the storage of flammable and combustible liquids. Today, oil stores are very important elements of the oil supply system in Ukraine. The analysis of literary sources has shown that fires in oil stores cause extra fire hazard of surrounding objects. Increasing of their scales requires further improvement of fire safety measures during planning and using of oil stores. Fires in such buildings are tricky and large; they cause great harm and often lead to the death of people; their liquidation is very difficult. Theoretical calculations shown that the collapse of structures of the packaged oil stores and, as a result, significant material losses and the threat to people's life and health, were resulted from the incorrect selection of building structures and the discrepancy between the fire resistance of these structures and the applicable norms and requirements for such buildings. Fire Safety, №34, 2019 9 Fire resistance limit of the metal double-T pillar made of steel ВСт3пс4 (profile size number 30) was calculated in the article. Such constructions are used in oil stores. The obtained fire resistance limit of a metal double-T pillar is about 16 minutes (R 16). According to the normative documents for buildings of this type (the degree of fire resistance of the building – III), it should be 120 minutes (R 120). Even if the calculation method has an error due to the choice of another steel grade, objectively none of the double-T profiles from the assortment list would provide proper fire resistance limit.


Sign in / Sign up

Export Citation Format

Share Document