scholarly journals Comparison between SWAT and SWAT+ for simulating streamflow in a paddy-field-dominated basin, northeast Thailand

2020 ◽  
Vol 187 ◽  
pp. 06002
Author(s):  
Isared Kakarndee ◽  
Ekasit Kositsakulchai

The performance of the well-known Soil and Water Assessment Tool (SWAT) and the new SWAT+ for streamflow simulation in a paddy- field-dominated basin was compared. The Lam Sioa River Basin, northeast Thailand (drainage area of 3,394 km2) was selected. The data inputs consisted of DEM, land use, soil, and climate (rainfall, temperature, sunshine hour, wind speed and humidity). The model parameters used the default values from SWAT database and daily simulation was conducted from 2005 to 2017. The division of sub-basins into “landscape units” is one of new features of SWAT+. The total number of HRUs defined from SWAT+ were higher than those from SWAT because the sub-basins derived from SWAT+ contained two landscape units (floodplain and upslope). With the default model parameters, the model performance indicators were found below the satisfactory rating. Both models simulated relatively high streamflow at the beginning of rainy season, while the observed streamflow was still not occurred. In paddy field, rainfall excess become ponding water, not surface runoff. The appropriate representation of paddy field in SWAT model should be further investigated.

2011 ◽  
Vol 84-85 ◽  
pp. 238-243
Author(s):  
Yu Jie Fang ◽  
Wen Bin Zhou ◽  
Ding Gui Luo

Hydrological simulation is the basis of water resources management and utilization. In this study, Soil and Water Assessment Tool (SWAT) model was applied to Jin River Basin for hydrological simulation on ArcView3.3 platform. The basic database of Jin river Basin was built using ArcGis9.2. Based on the LH-OAT parameter sensitivity analysis, the sensitive parameters of runoff were identified, including CN2, Gwqmn, rchrg_dp, ESCO, sol_z, SLOPE, SOL_AWC, sol_k, Gwrevap, and then model parameters related to runoff were calibrated and validated using data observed in weifang, yifeng, shanggao and gaoan hydrological stations during 2001-2008. The simulation showed that the simulated values were reasonably comparable to the observed data (Re<20%, R2 >0.7 and Nash-suttcliffe > 0.7), suggesting the validity of SWAT model in Jin River Basin.


2019 ◽  
Vol 50 (3) ◽  
pp. 861-877 ◽  
Author(s):  
Jing Guo ◽  
Xiaoling Su

Abstract Streamflow in the Shiyang River basin is numerically investigated based on the soil and water assessment tool (SWAT). The interpolation precipitation datasets of GSI, multisource satellite and reanalysis precipitation datasets including TRMM, CMDF, CFSR, CHIRPS and PGF are specially applied as the inputs for SWAT model, and the sensitivities of model parameters, as well as streamflow prediction uncertainties, are discussed via the sequential uncertainty fitting procedure (SUFI-2). Results indicate that streamflow simulation can be effectively improved by downscaling the precipitation datasets. The sensitivities of model parameters vary significantly with respect to different precipitation datasets and sub-basins. CN2 (initial SCS runoff curve number for moisture condition II) and SMTMP (base temperature of snow melt) are found to be the most sensitive parameters, which implies that the generations of surface runoff and snowmelt are extremely crucial for streamflow in this basin. Moreover, the uncertainty analysis of streamflow prediction indicates that the performance of simulation can be further improved by parameter optimization. It also demonstrates that the precipitation data from satellite and reanalysis datasets can be applied to streamflow simulation as effective inputs, and the dependences of parameter sensitivities on basin and precipitation dataset are responsible for the variation of simulation performance.


2021 ◽  
Vol 5 (2) ◽  
pp. 173-182
Author(s):  
Shehu Usman Haruna ◽  
Aliyu Kasim Abba ◽  
Rabi'u Aminu

The present study compared the performance of two different models for streamflow simulation namely: Soil Water Assessment Tool (SWAT) and the Artificial Neural Network (ANN). During the calibration periods, the Nash-Sutcliff (NS) and Coefficient of Determination (R2) for SWAT was 0.74 and 0.81 respectively, whereas for ANN, it was 0.99 and 0.85 respectively. The ANN performs better during the validation period as the result revealed with NS and R2 having 0.98 and 0.89 respectively, while for the SWAT model it was 0.71 and 0.74 respectively. Based on the recommended comparison of graphical and statistical evaluation performances of both models, the ANN model performed better in estimating peak flow events than the SWAT model in the Upper Betwa Basin. Furthermore, the rigorous time required and expertise for calibration of the SWAT is much less as compared with the ANN. Moreover, the results obtained from both models demonstrate the performances of the


Author(s):  
Sarvat Gull ◽  
Shagoofta Rasool Shah

Abstract The conjunction of heavy snowfall during winters and intensive rainfall during monsoons along with the mountainous topography expose the Lidder watershed to serious erosion and flood aggravation issues. Barely any attempts have been made for an in-depth examination of Lidder watershed for precise estimation of sub-basin level runoff and erosion. In this study Soil and Water Assessment Tool (SWAT) was calibrated using Sequential Uncertainty Fitting algorithm (SUFI-2) for modelling streamflow and sediment yield of the Lidder watershed. Daily runoff and sediment event data from 2003–2013 were used in this study; data from 2003–2008 was used for calibration and 2009–2013 for validation. Model performance was evaluated using various statistical tools which showed good results revealing excellent potential of SWAT model to simulate streamflow and sediment yield for both calibration and validation periods. The annual rate of average upland sediment drawn from the watershed was approximately 853.96 Mg/ha for an average surface runoff of 394.15 mm/year. This study identifies the vulnerable areas of the Lidder watershed which can be thoroughly examined by decision-makers for effective management and planning. Further, the calibrated model can be applied to other watersheds with similar characterization to influence strategies in the management of watershed processes.


Author(s):  
Sarvat Gull ◽  
Shagoofta Rasool Shah

Abstract In this study, the Soil and Water Assessment Tool (SWAT) model was used to examine the spatial variability of sediment yield, quantify runoff, and soil loss at the sub-basin level and prioritize sub-basins in the Sindh watershed due to its computational efficiency in complex watersheds. The Sequential Uncertainty Fitting-2 approach was used to determine the sensitivity and uncertainty of model parameters. The parameter sensitivity analysis showed that Soil Conservation Services Curve Number II is the most sensitive model parameter for streamflow simulation, whereas linear parameters for sediment re-entrainment is the most significant parameter for sediment yield simulation. This study used daily runoff and sediment event data from 2003 to 2013; data from 2003 to 2008 were utilized for calibration and data from 2009 to 2013 were used for validation. In general, the model performance statistics showed good agreement between observed and simulated values of streamflow and sediment yield for both calibration and validation periods. The noticed insights of this research show the ability of the SWAT model in simulating the hydrology of the Sindh watershed and its reliability to be utilized as a decision-making tool by decision-makers and researchers to influence strategies in the management of watershed processes.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 897 ◽  
Author(s):  
Xin Jin ◽  
Yanxiang Jin

The calibration of hydrological models is often complex in regions with scarce data, and generally only uses site-based streamflow data. However, this approach will yield highly generalised values for all model parameters and hydrological processes. It is therefore necessary to obtain more spatially heterogeneous observation data (e.g., satellite-based evapotranspiration (ET)) to calibrate such hydrological models. Here, soil and water assessment tool (SWAT) models were built to evaluate the advantages of using ET data derived from the Global Land surface Evaporation Amsterdam Methodology (GLEAM) to calibrate the models for the Bayinhe River basin in northwest China, which is a typical data-scarce basin. The result revealed the following: (1) A great effort was required to calibrate the SWAT models for the study area to obtain an improved model performance. (2) The SWAT model performance for simulating the streamflow and water balance was reliable when calibrated with streamflow only, but this method of calibration grouped the hydrological processes together and caused an equifinality issue. (3) The combination of the streamflow and GLEAM-based ET data for calibrating the SWAT model improved the model performance for simulating the streamflow and water balance. However, the equifinality issue remained at the hydrologic response unit (HRU) level.


2019 ◽  
Vol 4 (4) ◽  
pp. 444-457 ◽  
Author(s):  
Adisu Befekadu Kebede

This study aimed to model the flow of streams and identify the sub-basins responsible for the high flow in the Didessa watershed, southwest Ethiopia, considering the regional soils types. Soil and Water Assessment Tool (SWAT) model was used to simulate stream flow and quantify surface runoff. The input data used were Digital Elevation Model (DEM), land use/land cover map, soil map and metrological data. The data were obtained from Ministry of Water, Irrigation and Electricity and National Meteorology Agency of Ethiopia. Simulation of SWAT was used to identify the most vulnerable sub-basins to the hydrological process. The model was calibrated and validated using the stream flow data. The simulated stream flow was calibrated by the SWAT-CUP2012 calibration sub-model of SWAT-CUP SUFI2. Sensitivity analysis showed that curve numbers (CN2), ALPHA-BNK and CH-K2 are the most sensitive top three parameters. The R2 and Nash-Sutcliffe Efficiency (NSE) values were used to examine the model performance. The results indicate 0.84 and 0.80 for R2 and 0.65 and 0.54 for NSE during calibration and validation, respectively. The average annual surface runoff in the delineated catchment was 774.13 mm. Changes in precipitation explained 89% of the variation in surface runoff, as more than 89% of precipitation from the catchment converted to surface runoff. The most three annual surface runoffs contributing were the 11, 23 and 5 sub-basins. INFLUÊNCIA DO TIPO DE SOLO NO FLUXO DE CÓRREGOS PARA A BACIA SUPERIOR DO RIO DIDESSA, SUDOESTE DA ETIÓPIA UTILIZANDO O MODELO SWATResumoEste estudo teve como objetivo modelar o fluxo de córregos e identificar as sub-bacias responsáveis pelo alto fluxo na bacia hidrográfica do Rio Didessa, sudoeste da Etiópia, considerando os tipos de solos regionais. O modelo SWAT (Solo and Water Assessment Tool) foi utilizado para simular o fluxo da corrente e quantificar o escoamento superficial. Os dados de entrada utilizados foram o Modelo Digital de Elevação (DEM), mapa de uso / cobertura do solo, mapa do solo e dados metrológicos. Os dados foram obtidos no Ministério da Água, Irrigação e Eletricidade e Agência Nacional de Meteorologia da Etiópia. A simulação do SWAT foi utilizada para identificar as sub-bacias mais vulneráveis ao processo hidrológico. O modelo foi calibrado e validado usando os dados de fluxo dos córregos. O fluxo de corrente simulado foi calibrado pelo submodelo de calibração SWAT-CUP2012, do SWAT-CUP SUFI2. A análise de sensibilidade mostrou que os números da curva (CN2), ALPHA-BNK e CH-K2 são os três principais parâmetros mais sensíveis. Os valores de R2 e Nash-Sutcliffe Efficiency (NSE) foram usados para examinar o desempenho do modelo. Os resultados indicam 0,84 e 0,80 para R2 e 0,65 e 0,54 para NSE durante a calibração e validação, respectivamente. O escoamento superficial médio anual na bacia hidrográfica foi de 774,13 mm. Mudanças na precipitação explicaram 89% da variação no escoamento superficial, pois mais de 89% da precipitação da bacia foi convertida em escoamento superficial. As sub-bacias 11, 23 e 5 foram as que mais contribuíram para os fluxos superficiais anuais da Bacia do Rio Didessa. Palavras-chave: Tipo de solo. Análise sensitiva. Fluxo de córregos. Swat-Cup. Bacia Superior do Rio.


1970 ◽  
Vol 6 ◽  
pp. 47-51 ◽  
Author(s):  
Narayan K. Shrestha ◽  
P C Shakti ◽  
Pabitra Gurung

Use of easily accessible; public domain modeling software called Soil and Water Assessment Tool (SWAT) and its testing in watersheds has become essential to check developers' claims of its applicability. The SWAT model performance on Kliene Nete Watershed (Belgium) is examined. Given the watershed’s characteristic of a low lying; shallow ground water table, the test becomes an interesting task to perform. This paper presents calibration and validation of the watershed covering area of 581km2 . Flow separation is carried on using Water Engineering Time Series Processing tool (WETSPRO) and shows that around 60% of the total fow is contributed by base fow. Altogether seven SWAT model parameters have been calibrated with heuristic approach for the time frame of 1994-1998. Validation of these calibrated parameters in another independent time frame (1999-2002) is carried out. The parameter CH_k2 (Channel Effective Hydraulic Conductivity) is found to be the most sensitive. Nash Sutcliff Efficiency (NSE) values for the calibration and validation periods are found to be 74 and 67 percent-age, respectively. These ‘goodness-of-ft’ statistics, supported by graphical representations, show that the SWAT model can simulate such watershed with reasonable accuracy.Key words: SWAT; WETSPRO; Kliene Nete Watershed (Belgium); NSEDOI: 10.3126/hn.v6i0.4194Hydro Nepal Journal of Water, Energy and EnvironmentVol. 6, January 2010Page: 47-51Uploaded Date: 24 January, 2011


2021 ◽  
Author(s):  
Firas Alsilibe ◽  
Katalin Bene

Abstract In watershed modeling research, it is practical to subdivide a watershed into smaller units or sub-watersheds for modeling purposes. The ability of a model to simulate the watershed system depends on how well watershed processes are represented by the model and how well the watershed system is described by model input. This study is conducted to evaluate the impact of watershed subdivision and different weather input datasets on streamflow simulations using the soil and water assessment tool model. For this purpose, Cuhai-Bakonyér watershed was chosen as a study area. Two climate databases and four subdivision variations levels were evaluated. The model streamflow predictions slightly effected by subdivision impact. The climate datasets showed significant differences in streamflow predictions.


2016 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Hanhan Ahmad Sofiyuddin ◽  
Tasuku Kato ◽  
Ryota Tsuchiya

Soil and Water Assessment Tool (SWAT)  merupakan model hidrologi yang sangat berpotensi digunakan untuk memodelkan daerah aliran sungai yang didominasi lahan pertanian. Namun demikian, struktur model ini dapat menyebabkan ketidakpastian khususnya apabila diaplikasikan untuk lahan sawah beririgasi. Hal ini dikarenakan SWAT pada awalnya dikembangkan untuk memodelkan lahan pertanian yang tidak memiliki genangan sehingga asumsi ataupun struktur modelnya berbeda dibandingkan dengan konsep pemodelan yang biasa digunakan di lahan sawah. Namun demikian, tingkat pengaruh ketidakpastian ini terhadap performa model secara keseluruhan belum teridentifikasi secara detail. Penelitian ini bertujuan untuk menganalisa performa, kesesuaian aplikasi dan ketidakpastian SWAT (model awal dan modifikasinya) untuk memodelkan daerah aliran sungai berlahan sawah irigasi. Analisa dilakukan dengan mengevaluasi struktur model dan menganalisa ketidakpastian menggunakan metode Sequential Uncertainty Fitting (SUFI-2) pada beberapa tipe model, yaitu model orisinil dan termodifikasi. Berdasarkan hasil penelitian, dapat disimpulkan bahwa struktur model pada SWAT tidak mengakomodir proses genangan, rembesan, dan irigasi di lahan sawah. Pengaruh dari ketidaktepatan struktur model ini dapat dikurangi dengan melakukan kalibrasi sehingga menghasilkan indeks performa yang baik. Namun demikian, perbedaan performa secara signifikan dapat diamati setelah dianalisa lebih lanjut dengan memperhatikan ketidakpastian. Reliabilitas model termodifikasi lebih baik karena menghasilkan rentang ketidakpastian yang lebih sempit khususnya pada periode debit rendah. Hasil ini juga menunjukkan bahwa genangan, rembesan, dan irigasi merupakan proses yang sangat penting untuk pemodelan hidrologi di daerah aliran sungai berlahan sawah irigasi.


Sign in / Sign up

Export Citation Format

Share Document