scholarly journals Calibration and Validation of SWAT Model for Low Lying Watersheds: A Case Study on the Kliene Nete Watershed, Belgium

1970 ◽  
Vol 6 ◽  
pp. 47-51 ◽  
Author(s):  
Narayan K. Shrestha ◽  
P C Shakti ◽  
Pabitra Gurung

Use of easily accessible; public domain modeling software called Soil and Water Assessment Tool (SWAT) and its testing in watersheds has become essential to check developers' claims of its applicability. The SWAT model performance on Kliene Nete Watershed (Belgium) is examined. Given the watershed’s characteristic of a low lying; shallow ground water table, the test becomes an interesting task to perform. This paper presents calibration and validation of the watershed covering area of 581km2 . Flow separation is carried on using Water Engineering Time Series Processing tool (WETSPRO) and shows that around 60% of the total fow is contributed by base fow. Altogether seven SWAT model parameters have been calibrated with heuristic approach for the time frame of 1994-1998. Validation of these calibrated parameters in another independent time frame (1999-2002) is carried out. The parameter CH_k2 (Channel Effective Hydraulic Conductivity) is found to be the most sensitive. Nash Sutcliff Efficiency (NSE) values for the calibration and validation periods are found to be 74 and 67 percent-age, respectively. These ‘goodness-of-ft’ statistics, supported by graphical representations, show that the SWAT model can simulate such watershed with reasonable accuracy.Key words: SWAT; WETSPRO; Kliene Nete Watershed (Belgium); NSEDOI: 10.3126/hn.v6i0.4194Hydro Nepal Journal of Water, Energy and EnvironmentVol. 6, January 2010Page: 47-51Uploaded Date: 24 January, 2011

2014 ◽  
Vol 34 (4) ◽  
pp. 789-799 ◽  
Author(s):  
Donizete dos R. Pereira ◽  
Mauro A. Martinez ◽  
André Q. de Almeida ◽  
Fernando F. Pruski ◽  
Demetrius D. da Silva ◽  
...  

Hydrological models are important tools that have been used in water resource planning and management. Thus, the aim of this work was to calibrate and validate in a daily time scale, the SWAT model (Soil and Water Assessment Tool) to the watershed of the Galo creek , located in Espírito Santo State. To conduct the study we used georeferenced maps of relief, soil type and use, in addition to historical daily time series of basin climate and flow. In modeling were used time series corresponding to the periods Jan 1, 1995 to Dec 31, 2000 and Jan 1, 2001 to Dec 20, 2003 for calibration and validation, respectively. Model performance evaluation was done using the Nash-Sutcliffe coefficient (E NS) and the percentage of bias (P BIAS). SWAT evaluation was also done in the simulation of the following hydrological variables: maximum and minimum annual daily flowsand minimum reference flows, Q90 and Q95, based on mean absolute error. E NS and P BIAS were, respectively, 0.65 and 7.2% and 0.70 and 14.1%, for calibration and validation, indicating a satisfactory performance for the model. SWAT adequately simulated minimum annual daily flow and the reference flows, Q90 and Q95; it was not suitable in the simulation of maximum annual daily flows.


2020 ◽  
Vol 187 ◽  
pp. 06002
Author(s):  
Isared Kakarndee ◽  
Ekasit Kositsakulchai

The performance of the well-known Soil and Water Assessment Tool (SWAT) and the new SWAT+ for streamflow simulation in a paddy- field-dominated basin was compared. The Lam Sioa River Basin, northeast Thailand (drainage area of 3,394 km2) was selected. The data inputs consisted of DEM, land use, soil, and climate (rainfall, temperature, sunshine hour, wind speed and humidity). The model parameters used the default values from SWAT database and daily simulation was conducted from 2005 to 2017. The division of sub-basins into “landscape units” is one of new features of SWAT+. The total number of HRUs defined from SWAT+ were higher than those from SWAT because the sub-basins derived from SWAT+ contained two landscape units (floodplain and upslope). With the default model parameters, the model performance indicators were found below the satisfactory rating. Both models simulated relatively high streamflow at the beginning of rainy season, while the observed streamflow was still not occurred. In paddy field, rainfall excess become ponding water, not surface runoff. The appropriate representation of paddy field in SWAT model should be further investigated.


Author(s):  
Sarvat Gull ◽  
Shagoofta Rasool Shah

Abstract In this study, the Soil and Water Assessment Tool (SWAT) model was used to examine the spatial variability of sediment yield, quantify runoff, and soil loss at the sub-basin level and prioritize sub-basins in the Sindh watershed due to its computational efficiency in complex watersheds. The Sequential Uncertainty Fitting-2 approach was used to determine the sensitivity and uncertainty of model parameters. The parameter sensitivity analysis showed that Soil Conservation Services Curve Number II is the most sensitive model parameter for streamflow simulation, whereas linear parameters for sediment re-entrainment is the most significant parameter for sediment yield simulation. This study used daily runoff and sediment event data from 2003 to 2013; data from 2003 to 2008 were utilized for calibration and data from 2009 to 2013 were used for validation. In general, the model performance statistics showed good agreement between observed and simulated values of streamflow and sediment yield for both calibration and validation periods. The noticed insights of this research show the ability of the SWAT model in simulating the hydrology of the Sindh watershed and its reliability to be utilized as a decision-making tool by decision-makers and researchers to influence strategies in the management of watershed processes.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 897 ◽  
Author(s):  
Xin Jin ◽  
Yanxiang Jin

The calibration of hydrological models is often complex in regions with scarce data, and generally only uses site-based streamflow data. However, this approach will yield highly generalised values for all model parameters and hydrological processes. It is therefore necessary to obtain more spatially heterogeneous observation data (e.g., satellite-based evapotranspiration (ET)) to calibrate such hydrological models. Here, soil and water assessment tool (SWAT) models were built to evaluate the advantages of using ET data derived from the Global Land surface Evaporation Amsterdam Methodology (GLEAM) to calibrate the models for the Bayinhe River basin in northwest China, which is a typical data-scarce basin. The result revealed the following: (1) A great effort was required to calibrate the SWAT models for the study area to obtain an improved model performance. (2) The SWAT model performance for simulating the streamflow and water balance was reliable when calibrated with streamflow only, but this method of calibration grouped the hydrological processes together and caused an equifinality issue. (3) The combination of the streamflow and GLEAM-based ET data for calibrating the SWAT model improved the model performance for simulating the streamflow and water balance. However, the equifinality issue remained at the hydrologic response unit (HRU) level.


2017 ◽  
Vol 49 (3) ◽  
pp. 846-860 ◽  
Author(s):  
Sangam Shrestha ◽  
Manish Shrestha ◽  
Pallav Kumar Shrestha

Abstract This study evaluated the Soil and Water Assessment Tool (SWAT) model performance for 11 basins located in two contrasting climatic regions of Asia: the Himalayan and the Southeast Asian tropics. A large variation existed among the case study basins in relation to basin size (330–78,529 km2), topography (377–4,310 metres above sea level) and annual rainfall (1,273–2,500 mm). Performance of the model was evaluated using R2 and wR2 for a low discharge event; Nash–Sutcliffe efficiency (NSE), R2 and RMSE-observation standard deviation ratio (RSR) for high discharge events; and NSE, R2, PBIAS, RSR, NSErel and wR2 for the overall hydrographs. SWAT was found to be suitable for both climatic regions but yielded better performance in the Himalayan basins (NSE 0.72–0.81 at calibration) compared to the tropical basins (NSE 0.36–0.72 at calibration). Although most of the models underperformed in either low or high discharge events, a few of those remaining showed a balance between the extremes, proving that it is possible to achieve a balanced hydrograph with the SWAT model. The consistency of model performance across numerous Himalayan and tropical basins in the area confirmed the versatility and reliability of SWAT as a hydrological model and suitable tool for water resources planning and management.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1904 ◽  
Author(s):  
Aghlmand ◽  
Abbasi

Increasing water demands, especially in arid and semi-arid regions, continuously exacerbate groundwater resources as the only reliable water resources in these regions. Groundwater numerical modeling can be considered as an effective tool for sustainable management of limited available groundwater. This study aims to model the Birjand aquifer using GMS: MODFLOW groundwater flow modeling software to monitor the groundwater status in the Birjand region. Due to the lack of the reliable required data to run the model, the obtained data from the Regional Water Company of South Khorasan (RWCSK) are controlled using some published reports. To get practical results, the aquifer boundary conditions are improved in the established conceptual method by applying real/field conditions. To calibrate the model parameters, including the hydraulic conductivity, a semi-transient approach is applied by using the observed data of seven years. For model performance evaluation, mean error (ME), mean absolute error (MAE), and root mean square error (RMSE) are calculated. The results of the model are in good agreement with the observed data and therefore, the model can be used for studying the water level changes in the aquifer. In addition, the results can assist water authorities for more accurate and sustainable planning and management of groundwater resources in the Birjand region.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 657 ◽  
Author(s):  
Javier Senent-Aparicio ◽  
Francisco J. Alcalá ◽  
Sitian Liu ◽  
Patricia Jimeno-Sáez

This paper couples the Soil and Water Assessment Tool (SWAT) model and the chloride mass balance (CMB) method to improve the modeling of streamflow in high-permeability bedrock basins receiving interbasin groundwater flow (IGF). IGF refers to the naturally occurring groundwater flow beneath a topographic divide, which indicates that baseflow simulated by standard hydrological models may be substantially less than its actual magnitude. Identification and quantification of IGF is so difficult that most hydrological models use convenient simplifications to ignore it, leaving us with minimal knowledge of strategies to quantify it. The Castril River basin (CRB) was chosen to show this problematic and to propose the CMB method to assess the magnitude of the IGF contribution to baseflow. In this headwater area, which has null groundwater exploitation, the CMB method shows that yearly IGF hardly varies and represents about 51% of mean yearly baseflow. Based on this external IGF appraisal, simulated streamflow was corrected to obtain a reduction in the percent bias of the SWAT model, from 52.29 to 22.40. Corrected simulated streamflow was used during the SWAT model calibration and validation phases. The Nash–Sutcliffe Efficiency (NSE) coefficient and the logarithmic values of NSE (lnNSE) were used for overall SWAT model performance. For calibration and validation, monthly NSE was 0.77 and 0.80, respectively, whereas daily lnNSE was 0.81 and 0.64, respectively. This methodological framework, which includes initial system conceptualization and a new formulation, provides a reproducible way to deal with similar basins, the baseflow component of which is strongly determined by IGF.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Abera Ermias Koshuma ◽  
Yegelilaw Eyesus Debebe ◽  
Defaru Katise Dasho ◽  
Tarun Kumar Lohani

Rainfall is a basic input parameter for hydrological modelling that exerts a great influence on the dependability of hydrological simulations. Limited availability of accurate and reliable precipitation data in Abelti watershed of Omo Gibe basin of Ethiopia coerces to use satellite rainfall data to design watershed management practices. The primary objective of this research is to find a better output by comparing and evaluating Climate Prediction Centre Morphing techniques (CMORPH) and Tropical Rainfall Measuring Mission (TRMM). Satellite precipitation products (SPPs) and inputs were incorporated to simulate stream flow. Sensitivity and uncertainty analysis, calibration, and validation of the model were conducted using Soil and Water Assessment Tool (SWAT), Calibration and Uncertainty Program 2012 (SWAT-CUP-2012), particularly the Sequential/Uncertainty Fitting (SUFI-2) algorithm for all rainfall inputs independently. The calibration and validation period was taken as 2003–2010 and 2011–2018, respectively. On the basis of the modelling results of SWAT and uncertainty analysis, TRRM relatively performed well than that of CMORPH. The result illustrated that the SWAT model thoroughly predicted the catchment runoff simulation for all SPPs. However, TRMM-based simulations capture the shape of the observed stream flow hydrograph, and there was slight under and overestimation of the stream flow volume simulated SPPs followed by the reduction of model performance statistics. Bias-corrected satellite rainfall-based simulations significantly improved the model performance as well as the volume of stream flow simulated. The detail study exhibited that the in situ-based simulation outperformed satellite products in terms of the objective functions in the study area.


2013 ◽  
Vol 726-731 ◽  
pp. 3792-3798
Author(s):  
Wen Ju Zhao ◽  
Wei Sun ◽  
Zong Li Li ◽  
Yan Wei Fan ◽  
Jian Shu Song ◽  
...  

SWAT (Soil and Water Assessment Tool) model is one of distributed hydrological model, based on spatial data offered by GIS and RS. This article mainly introduces the SWAT model principle, structure, and it is the application of stream flow simulation in China and other countries, then points out the deficiency existing in the process of model research. In order to service in water resources management work better, experts and scholars further research the rate constant and uncertainty of the simplification of the model parameters, and the combination of RS and GIS to use, and hydrological scale problems.


2014 ◽  
Author(s):  
C.J.. J. Segnini ◽  
M.. Rashwan ◽  
M.J.. J. Hernandez ◽  
J. A. Rojas ◽  
M.A.. A. Infante

Abstract This paper presents a methodology for the probabilistic analysis of an infill or step-out opportunity using numerical simulation. Sensitivity and uncertainty analyses for all involved parameters were evaluated through different experimental design techniques. Subsequently, a proxy model was established to reproduce the numerical model performance. Finally, three appropriate solutions were selected from a large population of realizations corresponding to probabilistic percentiles (90%, 50%, and 10% certainty that the specified volume will be recovered). This proposed methodology helped the asset team to evaluate the well candidates more precisely, confidently, and in less time than the current standard methodology. More knowledge about the variables and their effects on overall outcomes was also gained, which helped the team make more-informed decisions. The workflow used the same numerical modeling software, incorporating and facilitating the changes of both static and dynamic properties simultaneously. A case study from Teak field, on the east coast of Trinidad, illustrates the applicability of the methodology and compares its results to those obtained using the standard workflow for the asset. The methodology is one of the latest developments in reservoir simulation, and it has not yet been incorporated into the operator's common practices and procedures for exploitation of the TSP fields.


Sign in / Sign up

Export Citation Format

Share Document