scholarly journals Data-Driven Air-Cooled Condenser Performance Assessment: Model and Input Variable Selection Comparison

2020 ◽  
Vol 197 ◽  
pp. 10003
Author(s):  
Simone Ghettini ◽  
Alessandro Sorce ◽  
Roberto Sacile

This paper presents a data–driven model for the estimation of the performance of an aircooled steam condenser (ACC) with the aim to develop an efficient online monitoring, summarized by the condenser pressure (or vacuum) as Key Performance Indicator. The estimation of the ACC performance model was based on different dataset from three different combined cycle power plants with a gross power of above 380 MWe each, focusing on stationary condition of the steam turbine. The datasets include both boundary (e.g. Ambient Temperature, Wind Speed) and operative parameters (e.g. steam mass flow rate, Steam turbine power, electrical load of the ACC fans) acquired from the power plants and some derived variable as the incondensable fraction, which calculation is here proposed as additional parameter. After a preliminary sensitivity analysis on data correlation, the paper focuses on the evaluation of different ACC Condenser models: Semi-Empirical model is described trough curves typically based on steam mass flow rate (or condenser load) and the ambient temperature as main parameters. Since monitoring based on ACC design curves Semi-Empirical models, provides biased poor results, with an error of about 15%, the curves parameters were estimated basing on training data set. Other two data driven models were presented, basing on a neural network modelling and multi linear regression technique and compared on the base of the reduced number of input at first and then including aldo the other process variables in the prediction of the condenser back pressure. Estimate the parameters of the Semi-Empirical model, results in a better prediction if just steam mass flow rate and ambient temperature are available, with an error of the 7%, thanks to the knowledge contained within the “curves shapes”, with respect to linear regression (8.3%) and Neural Network models (7.6%). Higher accuracy can be then obtained by considering a larger number of operative parameters and exploiting more complex data-driven model. With a higher number of features, the neural network model has proved a higher accuracy than the linear regression model. In fact, the mean percentage error of the NN model (2.6%), in all plant operating conditions, is slightly lower than the error of the linear regression model, but presents and much lower than the mean error of the Semi-Empirical model thanks to the additional data-based knowledge.

Author(s):  
Héctor J. Bravo ◽  
José C. Ramos ◽  
César Celis

Abstract The intermittency of renewable energies continues to be a limitation for their more widespread application because their large-scale storage is not yet practical. Concentrating solar power (CSP) has the possibility of thermally storing this energy to be used in times of higher demand at a more feasible storage price. The number of concentrated solar energy related projects have grown rapidly in recent years due to the advances in the associated solar technology. Some of the remaining issues regarding the associated high investment costs can be solved by integrating the solar potential into fossil fuel generation plants. An integrated solar combined cycle system (ISCCS) tends to be less dependent to climatic conditions and needs less capital inversion than a CSP system, letting the plant be more reliable and more economically feasible. In this work thus, two technologies of solar concentration (i) parabolic trough cylinder (PTC) and (ii) solar tower (ST) are initially integrated into a three-pressure levels combined cycle power plant. The proposed models are then modeled, simulated and properly assessed. Design and off design point computations are carried out taking into account local environmental conditions such as ambient temperature and direct solar radiation (DNI). The 8760 hourly-basis simulations carried out allow comparing the thermal and economic performance of the different power plant configurations accounted for in this work. The results show that injecting energy into the cycle at high temperatures does not necessarily imply a high power plant performance. In the studied plant configurations, introducing the solar generated steam mass flow rate at the evaporator outlet is slightly more efficient than introducing it at cycle points where temperatures are higher. At design point conditions thus, the plant configuration where the referred steam mass flow rate is introduced at the evaporator outlet generates 0.42% more power than those in which the steam is injected at higher cycle temperatures. At off design point conditions this value is reduced to 0.37%. The results also show that the months with high DNI values and those with low mean ambient temperatures are not necessarily the months which lead to the highest power outputs. In fact a balance between these two parameters, DNI and ambient temperature, leads to an operating condition where the power output is the highest. All plant configurations analyzed here are economically feasible, even so PTC related technologies tend to be more economically feasible than ST ones due to their lower investment costs.


Author(s):  
Jie Zhou ◽  
Yuhua Ai ◽  
Wenjun Kong

Liftoff properties of DME laminar axisymmetric diffusion flames were investigated experimentally with emphasis on the preheating effects. At room temperature, DME presented a different liftoff phenomenon from the non-oxygenated hydrocarbon fuels. It could not be lifted off directly by increasing the jet velocity except for far field ignition at relatively low mass flow rate. When fuel and dilution were preheated, the DME flame could be lifted off directly by increasing the jet velocity. The range of the mass flow rate of stabilized DME liftoff flames became much narrower and the liftoff height became much smaller at fuel preheating than that at ambient temperature. With the increase of the jet temperature, the DME liftoff flames exhibited as one of the following three types: stationary lifted flames, stable oscillating lifted flames and unstable oscillating lifted flames. Stationary lifted flames existed when the initial temperature was relatively low (less than 350 K). Stable oscillating lifted flames were observed at relatively high preheated temperature (about 350 K ∼ 750 K), and the trajectory of the liftoff flame base was nearly sinusoidal. Both the oscillating frequency and amplitude increased with the preheating temperature. The oscillating lifted flames were caused by thermal buoyancy effect, inertia and the instability in the inner flow. When the jet temperature exceeded 750 K, the oscillating lifted flames became unstable and easily to be blown out. The flame base of the stabilized DME liftoff flame had a tribrachial structure at both ambient temperature and elevated temperature.


Author(s):  
Diab W. Abueidda ◽  
Mohamed Gadalla

Worldwide concern about the scarcity of global water resources is increasing day by day. In Gulf countries, most power plants are co-generation power desalting plants (CPDP) that generate electric energy and also produce fresh water through the desalination of seawater. Nowadays, renewable energy provides a viable solution to the scarcity of energy resources and an environmental friendly option of global economy. In this paper, thermodynamic analyses have been performed on an integrated solar-based multi-stage flash desalination/Rankine cycle system. The respective losses as well as the first-law and second-law efficiencies for the system have been evaluated. The first-law and second-law efficiencies of the solar field were found to be 61.70% and 31.74%, respectively. The solar thermal field is based on direct steam generation method. Moreover, the mass flow rate through the Rankine cycle has been optimized to produce the maximum power. The optimal mass flow rate through the Rankine cycle found to be 51 kg/s. Furthermore, this paper presents and investigates a model of distillation plant that can use the heat rejected from the condenser of the Rankine cycle. The model is analyzed and validated with other results gained from literature. It found that the highest exergy destruction through the distillation unit occurs within the stages of the MSF unit. The percentage of exergy destruction in the MSF stages was found to be 75.41% of the total exergy destruction in the distillation unit. Additionally, this study verifies that increasing number of MSF stages decreases the percentage of exergy destruction.


Author(s):  
B. Facchini ◽  
M. Surace ◽  
S. Zecchi

Significant improvements in gas turbine cooling technology are becoming harder as progress goes over and over. Several impingement cooling solutions have been extensively studied in past literature. An accurate and extensive numerical 1D simulation on a new concept of sequential impingement was performed, showing good results. Instead of having a single impingement plate, we used several perforated plates, connecting the inlet of each one with the outlet of the previous one. Main advantages are: absence of the negative interaction between transverse flow and last rows impinging jets (reduced deflection); better distribution of pressure losses and heat transfer coefficients among the different plates, especially when pressure drops are significant and available coolant mass flow rate is low (lean premixed combustion chamber and LP turbine stages). Practical applications can have a positive influence on both cooled nozzles and combustion chambers, in terms of increased cooling efficiency and coolant mass flow rate reduction. Calculated effects are used to analyze main influences of such a cooling system on global performances of power plants.


Author(s):  
Mohsen Ghazikhani ◽  
Nima Manshoori ◽  
Davood Tafazoli

An industrial gas turbine has the characteristic that turbine output decreases on hot summer days when electricity demand peaks. For GE-F5 gas turbines of Mashad Power Plant when ambient temperature increases 1° C, compressor outlet temperature increases 1.13° C and turbine exhaust temperature increases 2.5° C. Also air mass flow rate decreases about 0.6 kg/sec when ambient temperature increases 1° C, so it is revealed that variations are more due to decreasing in the efficiency of compressor and less due to reduction in mass flow rate of air as ambient temperature increases in constant power output. The cycle efficiency of these GE-F5 gas turbines reduces 3 percent with increasing 50° C of ambient temperature, also the fuel consumption increases as ambient temperature increases for constant turbine work. These are also because of reducing in the compressor efficiency in high temperature ambient. Steam injection in gas turbines is a way to prevent a loss in performance of gas turbines caused by high ambient temperature and has been used for many years. VODOLEY system is a steam injection system, which is known as a self-sufficient one in steam production. The amount of water vapor in combustion products will become regenerated in a contact condenser and after passing through a heat recovery boiler is injected in the transition piece after combustion chamber. In this paper the influence of steam injection in Mashad Power Plant GE-F5 gas turbine parameters, applying VODOLEY system, is being observed. Results show that in this turbine, the turbine inlet temperature (T3) decreases in a range of 5 percent to 11 percent depending on ambient temperature, so the operating parameters in a gas turbine cycle equipped with VODOLEY system in 40° C of ambient temperature is the same as simple gas turbine cycle in 10° C of ambient temperature. Results show that the thermal efficiency increases up to 10 percent, but Back-Work ratio increases in a range of 15 percent to 30 percent. Also results show that although VODOLEY system has water treatment cost but by using this system the running cost will reduce up to 27 percent.


2021 ◽  
Vol 13 (21) ◽  
pp. 11654
Author(s):  
Roozbeh Vaziri ◽  
Akeem Adeyemi Oladipo ◽  
Mohsen Sharifpur ◽  
Rani Taher ◽  
Mohammad Hossein Ahmadi ◽  
...  

Analyzing the combination of involving parameters impacting the efficiency of solar air heaters is an attractive research areas. In this study, cost-effective double-pass perforated glazed solar air heaters (SAHs) packed with wire mesh layers (DPGSAHM), and iron wools (DPGSAHI) were fabricated, tested and experimentally enhanced under different operating conditions. Forty-eight iron pieces of wool and fifteen steel wire mesh layers were located between the external plexiglass and internal glass, which is utilized as an absorber plate. The experimental outcomes show that the thermal efficiency enhances as the air mass flow rate increases for the range of 0.014–0.033 kg/s. The highest thermal efficiency gained by utilizing the hybrid optimized DPGSAHM and DPGSAHI was 94 and 97%, respectively. The exergy efficiency and temperature difference (∆T) indicated an inverse relationship with mass flow rate. When the DPGSAHM and DPGSAHI were optimized by the hybrid procedure and employing the Taguchi-artificial neural network, enhancements in the thermal efficiency by 1.25% and in exergy efficiency by 2.4% were delivered. The results show the average cost per kW (USD 0.028) of useful heat gained by the DPGSAHM and DPGSAHI to be relatively higher than some double-pass SAHs reported in the literature.


Author(s):  
Mahmood Lahroodi ◽  
A. A. Mozafari

This paper presents an Artificial Neural Network (ANN) - based modeling technique for prediction of outlet temperature, pressure and mass flow rate of gas turbine combustor. ANN technique has been developed and used to model temperature, pressure and mass flow rate as a nonlinear function of fuel flow rate to the combustion chamber. Results obtained by present modeling are compared with those obtained by experiment. A quantitative analysis of modeling technique has been carried out using different evaluation indices; namely, Mean-Square-Quantization-Error (MSQE) and actual percentage error. The results show the effectiveness and capability of the proposed modeling technique with reasonable accuracies of about 95 percent.


2013 ◽  
Vol 341-342 ◽  
pp. 1342-1345
Author(s):  
Xing Sen Yang ◽  
Jing Yin

Uniform velocity of primary air is very important in the operation of utility boilers. Regulation of the resistance of each pipe was done without pulverized coal to achieve equal flow velocity. The mass flow rate of pulverized coal and the length difference of pipes would lead to velocity variation of primary air. By the research of primary air flow and the regulation process, model of the velocity variation was built to calculate the velocity of each pipe and their difference. The arrangement of pipes and the operation parameters were taken into consideration. With the experimental data, calculation of velocity under different states was made. The velocity difference of different pipes was estimated. The length difference between pipes and the variation of the mass flow rate of pulverized coal play the most important role that affects the velocity of primary air.


Sign in / Sign up

Export Citation Format

Share Document