scholarly journals Corrosion Failure Cause Analysis of Buried Pipelines in Oil and Gas Stations

2020 ◽  
Vol 213 ◽  
pp. 02021
Author(s):  
Bihuang Su ◽  
Yanjun Zhang ◽  
Guibai Huang ◽  
Zhitao Wang ◽  
Ran Liu

Objective: To explore the failure cause of buried pipelines in an oil and gas station. Method: The chemical elements and metallographic structure of the failed pipes were analyzed to evaluate whether the pipe body meets the requirements of relevant standards; the morphology and composition of the corrosion products were analyzed to discover the cause of corrosion. Result: The metal surface was rough and full of pitting pits with severe localized corrosion, and no crack of the metallic matrix was found. The corrosion products mainly contain Fe3O4 and a small amount of FeCO3, wherein Fe3O4 is the secondary corrosion product formed in the air, and FeCO3 is the corrosion product of CO2 in an oil and gas environment. The surface of the corroded product is loose in structure and easy to peel off, leading to further corrosion of the metallic matrix. Conclusion: The pipeline corrosion failure was caused by CO2-induced corrosion failure in the medium.

2018 ◽  
Vol 11 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Lin Xu ◽  
Jie Xu ◽  
Ming-biao Xu ◽  
Si-yang Li ◽  
Shuai Liu ◽  
...  

Introduction: The production casing of 3% Cr steel has encountered severe internal corrosion in Huizhou Oilfield. To disclose corrosion behavior of inner casing, a series of corrosion exposure tests were systematically conducted on 3% Cr coupons in terms of in-field conditions. Material and Methods: Influence of exposure time, temperature, and water-cut on the CO2 corrosion of 3% Cr steel was investigated, and analyses on weight loss, composition and morphology of corrosion product, and Tafel polarization curves were further carried out. Result: The results showed that the corrosion rate of 3% Cr steel increased with increasing temperature, but such trend descended when the temperature exceeded 65°C due to formation of an compact and adherent corrosion product film on the surface of 3% Cr coupons. While varying exposure time from 7 days to 14 days, the corrosion rate decreased, and the Cr and O enrichment was determined in the corrosion products. The corrosion rate of 3% Cr steel increased with a continuous increment of water-cuts, especially when the water-cut was larger than 40%. Conclusion: The localized corrosion can happen at the lower water-cut due to the presence of amorphous films. The main corrosion products were FeCO3, Cr5O12, Fe2O3, and Fe-Cr. Entry of CO2 to the simulated formation water caused an increase in the anodic Tafel slope, and accelerated dissolution of 3% Cr steel.


2020 ◽  
Vol 38 (3) ◽  
pp. 231-262
Author(s):  
Amy Spark ◽  
Kai Wang ◽  
Ivan Cole ◽  
David Law ◽  
Liam Ward

AbstractBuried pipelines are essential for the delivery of potable water around the world. A key cause of leaks and bursts in these pipelines, particularly those fabricated from carbon steel, is the accelerated localized corrosion due to the influence of microbes in soil. Here, studies conducted on soil corrosion of pipelines' external surface both in the field and the laboratory are reviewed with a focus on scientific approaches, particularly the techniques used to determine the action and contribution of microbiologically influenced corrosion (MIC). The review encompasses water pipeline studies, as well as oil and gas pipeline studies with similar corrosion mechanisms but significantly higher risks of failure. Significant insight into how MIC progresses in soil has been obtained. However, several limitations to the current breadth of studies are raised. Suggestions based on techniques from other fields of work are made for future research, including the need for a more systematic methodology for such studies.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1279 ◽  
Author(s):  
Lianguang Liu ◽  
Zebang Yu ◽  
Zhe Jiang ◽  
Jianhong Hao ◽  
Wenlin Liu

In order to research the electromagnetic interference in buried oil and gas pipelines generated by the grounding current of a grounding electrode of Ultra High Voltage Direct Current (UHVDC) system, observation experiments of stray current and pipe-to-soil potential (PSP) in the pipeline were carried out. Monitoring devices were installed at two sites of the Dong-Huang oil pipeline before the commissioning of the Zalute–Qingzhou and Shanghaimiao–Shandong ±800 kV UHVDC projects. Monitoring data on the stray current and PSP of the two monitoring sites were obtained when the two UHVDC projects were operated in monopolar mode on 24 December 2017 and 2 January 2019 and the grounding current reached 6250 A. The amplitude characteristics of the stray current and PSP at different distances from the grounding electrode and the effects of the magnitude of the stray current and PSP on the cathodic protection system are analyzed herein. The results show that the effects of the grounding current on pipeline corrosion are not only closely related to the distance between the grounding electrode and the pipeline but are also related to the running state of the potentiostats of pipelines and the distance between insulation flanges. Optimizing the performance of potentiostats and the distribution of insulation flanges can reduce the effects of UHVDC grounding current on pipeline corrosion.


2019 ◽  
Vol 6 (4) ◽  
pp. 181899 ◽  
Author(s):  
Jigang Wang ◽  
Lihui Meng ◽  
Zhenzhong Fan ◽  
Qingwang Liu ◽  
Zhineng Tong

The conditions surrounding oil and gas exploration are becoming more hazardous, especially in oil and gas fields with a high quantity of corrosive components such as CO 2 . CO 2 causes localized corrosion of tools made from metal, rubber and other materials in humid environments; this leads to corrosion failure in metal equipment and downhole tools such as drills pipes, casings and oil pipes, thereby reducing their service life. In this study, the composition, lattice and crystalline forms of corrosion products and corroded materials were analysed using scanning electron microscopy, energy spectrum analysis, X-ray diffraction and polarization curves, in order to investigate the corrosion mechanisms and influential factors for several common tool materials. A CO 2 corrosion model was established for two materials and the results were verified with optimal prediction values.


2006 ◽  
Vol 985 ◽  
Author(s):  
Dawn E. Janney

AbstractArgonne National Laboratory has developed an electrometallurgical process for conditioning spent sodium-bonded metallic reactor fuel from the Experimental Breeder Reactor II (EBR-II). One waste stream from this process consists of a metal waste form (MWF) whose baseline composition is stainless steel alloyed with 15 wt% Zr (SS-15Zr) and whose microstructure is a eutectic intergrowth of iron solid solutions and Fe-Zr-Cr-Ni intermetallics. This paper reports scanning electron microscope (SEM) observations of corrosion products formed during static immersion tests in which coupons of surrogate MWF containing 10 wt% U (SS-15Zr-10U) were immersed in solutions with nominal pH values of 3 and 4 and 1000 ppm added chloride for 70 days at 50 °C. Although the majority of the surface areas of the coupons appear unchanged, linear areas with localized corrosion products apparently consisting of porous materials overlying corrosion-product-filled channels formed on both coupons, cross-cutting phase boundaries in the original eutectic microstructures. Many of the linear areas intersected the sample edge at notches present before the tests or followed linear flaws visible in pre-test images. Compositions of corrosion products differed significantly from the bulk composition, and the maximum observed concentration of U exceeded that reported in actinide-bearing phases in uncorroded surrogate MWF samples with comparable concentrations of U.


2021 ◽  
pp. 13-22
Author(s):  
R. M. Bembel ◽  
S. R. Bembel ◽  
M. I. Zaboeva ◽  
E. E. Levitina

Based on the well-known results of studies of the ether-geosoliton concept of the growing Earth, the article presents the conclusions that made it possible to propose a model of thermonuclear synthesis of chemical elements that form renewable reserves of developed oil and gas fields. It was revealed that local zones of abnormally high production rates of production wells and, accordingly, large cumulative production at developed fields in Western Siberia are due to the restoration of recoverable reserves due to geosoliton degassing. Therefore, when interpreting the results of geological and geophysical studies, it is necessary to pay attention to the identified geosoliton degassing channels, since in the works of R. M. Bembel and others found that they contributed to the formation of a number of hydrocarbon deposits in Western Siberia. When interpreting the results of geological-geophysical and physicochemical studies of the fields being developed, it is recommended to study the data of the ring high-resolution seismic exploration technology in order to identify unique areas of renewable reserves, which can significantly increase the component yield of hydrocarbon deposits.


2021 ◽  
pp. 48-49
Author(s):  
Shree Meenakshi. K

Pipeline corrosion is the deterioration of pipe material and the related system due to its interaction with the working environment. It affects pipeline and accessories made of both metals and non-metals. Pipeline corrosion—and the related catastrophic failures that it can cause—cost billions of dollars to the economy. The total annual cost of corrosion in 2016, including direct and indirect costs, was estimated at over USD $1.1 trillion in the United States. In other words, corrosion is a big problem. It predominantly affects pipelines made of metals such as copper, aluminum, cast iron, carbon steel, stainless steel and alloy steel pipes used for buried, underground, submerged or other pipelines. That makes designing and selecting the best available systems and materials for pipelines and their corrosion protection systems an extremely important issue for the oil and gas industry. In this research paper we will investigate and take a look at the key types of corrosion that affect pipelines, and some of the methods that are used to protect this infrastructure.


Sign in / Sign up

Export Citation Format

Share Document