scholarly journals Evaluation of the stability of the parametric phase number converter

2020 ◽  
Vol 216 ◽  
pp. 01092
Author(s):  
Ivan Bedritskiy ◽  
Kamila Jurayeva ◽  
Laziz Bazarov

In the article related issues to the stability assessment of a parametric converter of the number of phases of a ferroresonance nature are analyzed. The areas of change in the characteristic parameters of the converter that guarantee its stable operation are considered.

2013 ◽  
Vol 732-733 ◽  
pp. 882-887
Author(s):  
Yong Chun Su ◽  
Hao Wei Jia

Mid-term stability assessment is an important work to support power system operation in a province power grid of China every year. The stability assessment method and process was introduced in this paper. As an example, the stability of Jiangxi province power system was evaluated in the following two years. Weak area and weak transmission line were found out in each power supply area. Prevention and control measures were proposed. According to problems among the assessment process and using the state monitoring data, an approach was discussed to increase the assessment result accuracy. The analysis conclusion provides the reference to the safe and stable operation of Jiangxi power system.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 29-35 ◽  
Author(s):  
C. J. Banks ◽  
P. N. Humphreys

The stability and operational performance of single stage digestion with and without liquor recycle and two stage digestion were assessed using a mixture of paper and wood as the digestion substrate. Attempts to maintain stable digestion in both single stage reactors were unsuccessful due to the inherently low natural buffering capacity exhibited; this resulted in a rapid souring of the reactor due to unbuffered volatile fatty acid (VFA) accumulation. The use of lime to control pH was unsatisfactory due to interference with the carbonate/bicarbonate equilibrium resulting in wide oscillations in the control parameter. The two stage system overcame the pH stability problems allowing stable operation for a period of 200 days without any requirement for pH control; this was attributed to the rapid flushing of VFA from the first stage reactor into the second stage, where efficient conversion to methane was established. Reactor performance was judged to be satisfactory with the breakdown of 53% of influent volatile solids. It was concluded that the reactor configuration of the two stage system offers the potential for the treatment of cellulosic wastes with a sub-optimal carbon to nitrogen ratio for conventional digestion.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1933
Author(s):  
Xinran Guo ◽  
Yuanchu Cheng ◽  
Jiada Wei ◽  
Yitian Luo

The dynamic characteristics of hydropower unit governing systems considerably influence the stability of hydropower units and the connected power system. The dynamic performances of hydropower units with power regulation mode (PRM) and opening regulation mode (ORM) are different. This paper establishes a detailed linear model of a hydropower unit based on the Phillips–Heffron model. The damping characteristic and stability of two regulation modes with different water inertia time constants TW were analyzed. ORM tended to provide negative damping, while PRM often provided positive damping in the major parts of the frequency range within the normal frequency oscillations when TW was large. Eigenvalue analysis illustrated that PRM has better stability than ORM. To validate the analysis, a simulation under two typical faults WAS conducted based on a nonlinear model of a hydropower unit. The simulation results illustrated that the responses of units with PRM are more stable in terms of important operating parameters, such as output power, rotor speed, and power angles. For hydropower units facing challenges in stable operation, PRM is recommended to obtain good dynamic stability.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ferenc Molnar ◽  
Takashi Nishikawa ◽  
Adilson E. Motter

AbstractBehavioral homogeneity is often critical for the functioning of network systems of interacting entities. In power grids, whose stable operation requires generator frequencies to be synchronized—and thus homogeneous—across the network, previous work suggests that the stability of synchronous states can be improved by making the generators homogeneous. Here, we show that a substantial additional improvement is possible by instead making the generators suitably heterogeneous. We develop a general method for attributing this counterintuitive effect to converse symmetry breaking, a recently established phenomenon in which the system must be asymmetric to maintain a stable symmetric state. These findings constitute the first demonstration of converse symmetry breaking in real-world systems, and our method promises to enable identification of this phenomenon in other networks whose functions rely on behavioral homogeneity.


1991 ◽  
Author(s):  
Barry Deakin

During the development of new stability regulations for the U.K. Department of Transport, doubt was cast over many of the assumptions made when assessing the stability of sailing vessels. In order to investigate the traditional methods a programme of work was undertaken including wind tunnel tests and full scale data acquisition. The work resulted in a much improved understanding of the behaviour of sailing vessels and indeed indicated that the conventional methods of stability assessment are invalid, the rules now applied in the U.K. being very different to those in use elsewhere. The paper concentrates on the model test techniques which were developed specifically for this project but which will have implications to other vessel types. The tests were of two kinds: measurement of the wind forces and moments on a sailing vessel; and investigation of the response of sailing vessels to gusts of wind. For the force and moment measurements models were mounted in a tank of water on a six component balance and tested in a large boundary layer wind tunnel. Previous tests in wind tunnels have always concentrated on performance and the heeling moments have not normally been measured correctly. As the measurements of heeling moment at a range of heel angles was of prime importance a new balance and mounting system was developed which enabled the above water part of the vessel to be modelled correctly, the underwater part to be unaffected by the wind, and the interface to be correctly represented without interference. Various effects were investigated including rig type, sheeting, heading, heel angle and wind gradient. The gust response tests were conducted with Froude scaled models floating in a pond set in the wind tunnel floor. A mechanism was installed in the tunnel which enabled gusts of various characteristics to be generated, and the roll response of the models was measured with a gyroscope. These tests provided information on the effects of inertia, damping, rolling and the characteristics of the gust. Sample results are presented to illustrate the uses to which these techniques have been put.


2018 ◽  
Vol 41 (8) ◽  
pp. 2352-2364 ◽  
Author(s):  
Arif Iqbal ◽  
Girish Kumar Singh

Owing to the superior properties and stable operation, the Permanent Magnet Synchronous Motor (PMSM) is preferably used in wide industrial applications. But, the stability of motor is found to be dependent on its initial operating condition, showing the chaotic characteristic. Therefore, this paper addresses the chaos control of PMSM by developing four simple but effective controllers, which are mathematically designed by using the principle of Lyapunov’s method for asymptotic global stability. A comparative performance assessment has been carried out for the developed controllers in terms of settling time and peak over shoot. Furthermore, the concept of conventional proportional-integration type controller has been extended to develop two more controllers for chaos control of PMSM. Numerical simulation has been carried out in Matlab environment for performance evaluation of developed controllers. The obtained analytical results have been validated through experimental implementation in real time environment on Multisim/Ultiboard platform.


2021 ◽  
pp. 29-35
Author(s):  
Ilya A. Gulyaev Gulyaev ◽  
Evgeniy P. Ronnov

. A method of stability analysis for combined ship (oil carrier/platform ship type) at the stage of design study is presented. It should be noted that not all of ship’s main seaworthiness and operational characteristics are the result of a simple addition of the characteristics of an oil carrier and a platform ship. Their mutual influence takes place, which should be taken into account when analysing the stability in the multivariant optimization problems of internal and external design of such ships. This leads to the requirement to adjust the known methods of stability analysis at the initial stages of ship design, which was the purpose of the present work and its originality. Taking into account the multivariance of the task and the hull design type, the stability assessment will be carried out through the analysis of the metacentric height extreme value on the assumption that the requirements of Russian River Register for admissible heeling angle at static wind effect are met. In order to account for nonlinearity of static stability curve when inclining up to the angles of deck immersion into water and emergence of bilge, it is suggested to apply an approximate method of metacentric radius determination. The proposed method of combined ship stability assessment is recommended to apply at the stage of justification and analysis of ship’s key elements as a limitation in the problems of mathematical modeling of optimization of such type of ships. The method allows to exclude from further consideration at the design study stage the possible options that do not meet the requirements of seaworthiness.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2250 ◽  
Author(s):  
Rui Wang ◽  
Qiuye Sun ◽  
Qifu Cheng ◽  
Dazhong Ma

This paper proposes an overall practical stability assessment for a multi-port single-phase solid-state transformer (MS3T) in the electromagnetic timescale. When multiple stable subsystems are combined into one MS3T, the newly formed MS3T has a certain possibility to be unstable. Thus, this paper discusses the stability assessment of the MS3T in detail. First and foremost, the structure of the MS3T and its three stage control strategies are proposed. Furthermore, the stability analysis of each of the MS3T’s subsystems is achieved through the closed loop transfer function of each subsystem, respectively, including an AC-DC front-end side converter, dual active bridge (DAB) with a high-frequency (HF) or medium-frequency (MF) transformer, and back-end side incorporating DC-AC and dc-dc converters. Furthermore, the practical impedance stability criterion in the electromagnetic timescale, which only requires two current sensors and one external high-bandwidth small-signal sinusoidal perturbation current source, is proposed by the Gershgorin theorem and Kirchhoff laws. Finally, the overall stability assessment, based on a modified impedance criterion for the MS3T is investigated. The overall practical stability assessment of the MS3T can be validated through extensive simulation and hardware results.


2014 ◽  
Vol 960-961 ◽  
pp. 1588-1591
Author(s):  
Xiang Dong Zhao ◽  
Xin Zhao ◽  
Ming Jun Lv ◽  
Jian Guo Liu ◽  
Feng Zhen Liu ◽  
...  

The Internet and the gradual implementation of the continuous power grid market in recent years make the power system more complex under different operating environment. Safe and stable operation of power grids have become increasingly important . With the rapidf development of the grid and constant innovation, safe and stable operation also has a new requirement , because the rapid development of the power system brings more This paper analyzes the causes of blackouts and reviews security of the power system stability problems related to measures on the security and stability of the power system operation .


Sign in / Sign up

Export Citation Format

Share Document