scholarly journals Energy Estimation Based on Path Tracking for a Differential Drive Wheeled Mobile Robot

2021 ◽  
Vol 229 ◽  
pp. 01029
Author(s):  
Said Fadlo ◽  
Nabila Rabbah ◽  
Abdelhafid Ait Elmahjoub

To improve the energy efficiency of mobile robots and increase their time of operation, a comprehensive energy model is needed. Having such a model requires a lot of complex analysis and design time. There has been a lot of research into optimizing the power consumption of mobile robots but have not benefited from the advantages of languages to model complex cyber-physical systems. In this work, we used the Simscape™ MATLAB® environment to simplify and speed up the design of an energy consumption model of a differential drive mobile robot. We also estimated the energy consumption of the mobile in a different path tracking scenario. Our results show that is possible to obtain a good accuracy of path following with acceptable energy consumption.

2020 ◽  
Vol 17 (2) ◽  
pp. 172988142090965
Author(s):  
Mauricio F Jaramillo-Morales ◽  
Sedat Dogru ◽  
Juan B Gomez-Mendoza ◽  
Lino Marques

Energy autonomy is an important aspect that needs to be improved in order to increase efficiency in mobile robotic tasks. Having accurate power models allows the estimation of energy consumption along different trajectories. This article proposes a power model for two-wheel differential drive mobile robots. The proposed model takes into account the dynamic parameters of the robot and its motors, and predicts the energy consumption for trajectories with variable accelerations and variable payloads. The experimental validation of the proposed model was performed with a Nomad Super Scout II mobile robot which was driven along straight and curved trajectories, with different payloads and accelerations. The experiments using the proposed model showed accuracies of 96.67% along straight trajectories and 81.25% along curved trajectories in the estimation of energy consumption.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 27 ◽  
Author(s):  
Linfei Hou ◽  
Liang Zhang ◽  
Jongwon Kim

To improve the energy efficiency of a mobile robot, a novel energy modeling method for mobile robots is proposed in this paper. The robot can calculate and predict energy consumption through the energy model, which provides a guide to facilitate energy-efficient strategies. The energy consumption of the mobile robot is first modeled by considering three major factors: the sensor system, control system, and motion system. The relationship between the three systems is elaborated by formulas. Then, the model is utilized and experimentally tested in a four-wheeled Mecanum mobile robot. Furthermore, the power measurement methods are discussed. The energy consumption of the sensor system and control system was at the milliwatt level, and a Monsoon power monitor was used to accurately measure the electrical power of the systems. The experimental results showed that the proposed energy model can be used to predict the energy consumption of the robot movement processes in addition to being able to efficiently support the analysis of the energy consumption characteristics of mobile robots.


Author(s):  
Lluis Pacheco ◽  
Ningsu Luo

Accurate path following is an important mobile robot research topic. In many cases, radio controlled robots are not able to work properly due to the lack of a good communication system. This problem can cause many difficulties when robot positioning is regarded. In this context, gaining automatic abilities becomes essential to achieving a major number of mission successes. This chapter presents a suitable control methodology used to achieve accurate path following and positioning of nonholonomic robots by using PID controllers. An important goal is to present the obtained experimental results by using the available mobile robot platform that consists of a differential driven one.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Rui Wang ◽  
Ming Wang ◽  
Yong Guan ◽  
Xiaojuan Li

Obstacle avoidance is a key performance of mobile robots. However, its experimental verification is rather difficult, due to the probabilistic behaviors of both the robots and the obstacles. This paper presents the Markov Decision Process based probabilistic formal models for three obstacle-avoidance strategies of a mobile robot in an uncertain dynamic environment. The models are employed to make analyses in PRISM, and the correctness of the analysis results is verified by MATLAB simulations. Finally, the minimum time and the energy consumption are determined by further analyses in PRISM, which prove to be useful in finding the optimal strategy. The present work provides a foundation for the probabilistic formal verification of more complicated obstacle-avoidance strategies.


Robotica ◽  
2012 ◽  
Vol 30 (6) ◽  
pp. 1029-1039 ◽  
Author(s):  
Y. Maddahi ◽  
N. Sepehri ◽  
A. Maddahi ◽  
M. Abdolmohammadi

SUMMARYExact knowledge of the position and proper calibration of robots that move by wheels form an important foundation in mobile robot applications. In this context, a variety of sensory systems and techniques have been developed for accurate positioning of differential drive mobile robots. This paper, first, provides a brief overview of mobile robots positioning techniques and then, presents a new benchmark method capable of calibrating mobile robots with differential drive mechanisms to correct systematic errors. The proposed method is compared with the commonly used University of Michigan Benchmark (UMBmark) odometry method. Two sets of comparisons are conducted on six prototyped robots with differential drives. The first set of tests establishes the workability and accuracy that can be achieved with the new method and compares them with the ones obtained from the UMBmark technique. The second experiment compares the performance of a mobile robot, calibrated with either the UMBmark or the new method, for an unseen path. It is demonstrated that the proposed method of calibration is simple to implement, and leads to accuracy comparable to the UMBmark method. Specifically, while the error corrections in both methods are within ±5% of each other, the proposed method requires single straight line motion for calibration, which is believed to be simpler and less timely to implement than the square path motion required by the UMBmark technique. The method should therefore be considered seriously as a new tool when calibrating differential drive mobile robots.


Author(s):  
Parisa Yazdjerdi ◽  
Nader Meskin

In this article, an actuator fault-tolerant control scheme is proposed for differential-drive mobile robots based on the concept of multiple-model approach. The nonlinear kinematic model of the differential-drive mobile robot is discretized and a bank of extended Kalman filters is designed to detect, isolate, and identify actuator faults. A fault-tolerant controller is then developed based on the detected fault to accommodate its effect on the trajectory-tracking performance of the mobile robot. Extensive experimental results are presented to demonstrate the efficacy of the proposed fault-tolerant control approach.


2013 ◽  
Vol 432 ◽  
pp. 494-499
Author(s):  
Tey Wei Kang ◽  
Lim Thol Yong ◽  
Yeong Che Fai ◽  
Eileen Su Lee Ming

Most mobile robots use differential-drive concept, where they are equipped with two actuators that permit only single-direction rotation at a time. This concept limits the robots navigation because its orientation must always change according to the direction of movement. This paper presents the development of an omnidirectional mobile robot that uses three actuators, aligned in 120 degrees separation and each attached to an omniwheel. By manipulating actuator speed, the robot can navigate to any direction without changing its orientation. UsingNIsbRIO9632xtas the main controller, navigation algorithm is implemented in LabVIEW, integrated with PID controller to fine-tune robot movements.


2020 ◽  
Vol 10 (2) ◽  
pp. 676
Author(s):  
Xing Wu ◽  
Jorge Angeles ◽  
Ting Zou ◽  
Chao Sun ◽  
Qi Sun ◽  
...  

Applying computer vision to mobile robot navigation has been studied for over two decades. One of the most challenging problems for a vision-based mobile robot involves accurately and stably tracking a guide path in the robot limited field of view under high-speed manoeuvres. Pure pursuit controllers are a prevalent class of path tracking algorithms for mobile robots, while their performance is rather limited to relatively low speeds. In order to cope with the demands of high-speed manoeuvres, a multi-loop receding-horizon control framework, including path tracking, robot control, and drive control, is proposed in this paper. This is done within the vision guidance of differential-driving wheeled mobile robots (DWMRs). Lamé curves are used to synthesize a trajectory with G 2 -continuity in the field of view of the mobile robot for path tracking, from its current posture towards the guide path. The platform twist—point velocity and angular velocity—is calculated according to the curvature of the Lamé-curve trajectory, then transformed into actuated joint rates by means of the inverse-kinematics model; finally, the motor torques needed by the driving wheels are obtained based on the inverse-dynamics model. The whole multi-loop control process, initiated from Lamé-curve blending to computational torque control, is conducted iteratively by means of receding-horizon guidance to robustly drive the mobile robot manoeuvring close to the guide path. The results of numerical simulation show the effectiveness of our approach.


Sign in / Sign up

Export Citation Format

Share Document