scholarly journals Receding-Horizon Vision Guidance with Smooth Trajectory Blending in the Field of View of Mobile Robots

2020 ◽  
Vol 10 (2) ◽  
pp. 676
Author(s):  
Xing Wu ◽  
Jorge Angeles ◽  
Ting Zou ◽  
Chao Sun ◽  
Qi Sun ◽  
...  

Applying computer vision to mobile robot navigation has been studied for over two decades. One of the most challenging problems for a vision-based mobile robot involves accurately and stably tracking a guide path in the robot limited field of view under high-speed manoeuvres. Pure pursuit controllers are a prevalent class of path tracking algorithms for mobile robots, while their performance is rather limited to relatively low speeds. In order to cope with the demands of high-speed manoeuvres, a multi-loop receding-horizon control framework, including path tracking, robot control, and drive control, is proposed in this paper. This is done within the vision guidance of differential-driving wheeled mobile robots (DWMRs). Lamé curves are used to synthesize a trajectory with G 2 -continuity in the field of view of the mobile robot for path tracking, from its current posture towards the guide path. The platform twist—point velocity and angular velocity—is calculated according to the curvature of the Lamé-curve trajectory, then transformed into actuated joint rates by means of the inverse-kinematics model; finally, the motor torques needed by the driving wheels are obtained based on the inverse-dynamics model. The whole multi-loop control process, initiated from Lamé-curve blending to computational torque control, is conducted iteratively by means of receding-horizon guidance to robustly drive the mobile robot manoeuvring close to the guide path. The results of numerical simulation show the effectiveness of our approach.

2002 ◽  
Vol 14 (4) ◽  
pp. 323-323
Author(s):  
Takashi Tsubouchi ◽  
◽  
Keiji Nagatani ◽  

Since the dawning of the Robotics age, mobile robots have been important objectives of research and development. Working from such aspects as locomotion mechanisms, path and motion planning algorithms, navigation, map building and localization, and system architecture, researchers are working long and hard. Despite the fact that mobile robotics has a shorter history than conventional mechanical engineering, it has already accumulated a major, innovative, and rich body of R&D work. Rapid progress in modern scientific technology had advanced to where down-sized low-cost electronic devices, especially highperformance computers, can now be built into such mobile robots. Recent trends in ever higher performance and increased downsizing have enabled those working in the field of mobile robotics to make their models increasingly intelligent, versatile, and dexterous. The down-sized computer systems implemented in mobile robots must provide high-speed calculation for complicated motion planning, real-time image processing in image recognition, and sufficient memory for storing the huge amounts of data required for environment mapping. Given the swift progress in electronic devices, new trends are now emerging in mobile robotics. This special issue on ""Modern Trends in Mobile Robotics"" provides a diverse collection of distinguished papers on modern mobile robotics research. In the area of locomotion mechanisms, Huang et al. provide an informative paper on control of a 6-legged walking robot and Fujiwara et al. contribute progressive work on the development of a practical omnidirectional cart. Given the importance of vision systems enabling robots to survey their environments, Doi et al., Tang et al., and Shimizu present papers on cutting-edge vision-based navigation. On the crucial subject of how to equip robots with intelligence, Hashimoto et al. present the latest on sensor fault detection in dead-reckoning, Miura et al. detail the probabilistic modeling of obstacle motion during mobile robot navigation, Hada et al. treat long-term mobile robot activity, and Lee et al. explore mobile robot control in intelligent space. As guest editors, we are sure readers will find these articles both informative and interesting concerning current issues and new perspectives in modern trends in mobile robotics.


2013 ◽  
Vol 572 ◽  
pp. 644-647
Author(s):  
Gökhan Aslan ◽  
Erhan Ilhan Konukseven ◽  
Buğra Koku

In an efficient autonomous navigation and exploration, the robots should sense the environment as exactly as possible in real-time and act correctly on the basis of the acquired 3D data. Laser scanners have been used for the last 30 years for mobile robot navigation. However, they often did not enough speed, accuracy and field of view. In this paper we present the design and implementation of a scanning platform, which can be used for both outdoor and indoor mobile robot navigation and mapping. A 3D scanning platform based on a 2D laser rangefinder was designed in compact way for fast and accurate mapping with maximum field of view. The range finder is rotated around the vertical axis to extract the 3D indoor information. However, the scanner is designed to be placed in any direction on a mobile robot. The designed mechanism provides 360º degree horizontal by 240º degree vertical field of view. The maximum resolution is 0.36º degrees in elevation and variable in azimuth (0.1 degrees if scanning platform is set to complete a 360º degree rotation in 3.6 seconds). The proposed low cost compact design is tested by scanning a physical environment with known dimensions to show that it can be used as a precise and reliable high quality 3D sensor for autonomous mobile robots.


2010 ◽  
Vol 7 ◽  
pp. 109-117
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov ◽  
B.S. Yudintsev

The article deals with the development of a high-speed sensor system for a mobile robot, used in conjunction with an intelligent method of planning trajectories in conditions of high dynamism of the working space.


2009 ◽  
Vol 06 (03) ◽  
pp. 181-191
Author(s):  
LEONIMER FLAVIO DE MELO ◽  
JOSE FERNANDO MANGILI

This paper presents the virtual environment implementation for simulation and design conception of supervision and control systems for mobile robots, that are capable to operate and adapt in different environments and conditions. The purpose of this virtual system is to facilitate the development of embedded architecture systems, emphasizing the implementation of tools that allow the simulation of the kinematic conditions, dynamic and control, with monitoring in real time of all important system points. For this, an open control architecture is proposed, integrating the two main techniques of robotic control implementation in the hardware level: systems microprocessors and reconfigurable hardware devices. The implemented simulator system is composed of a trajectory generating module, a kinematic and dynamic simulator module, and an analysis module of results and errors. All the kinematic and dynamic results obtained during the simulation can be evaluated and visualized in graphs and table formats in the results analysis module, allowing the improvement of the system, minimizing the errors with the necessary adjustments and optimization. For controller implementation in the embedded system, it uses the rapid prototyping which is the technology that allows in set, with the virtual simulation environment, the development of a controller project for mobile robots. The validation and tests had been accomplished with nonholonomic mobile robot models with differential transmission.


Author(s):  
V. Ram Mohan Parimi ◽  
Devendra P. Garg

This paper deals with the design and optimization of a Fuzzy Logic Controller that is used in the obstacle avoidance and path tracking problems of mobile robot navigation. The Fuzzy Logic controller is tuned using reinforcement learning controlled Genetic Algorithm. The operator probabilities of the Genetic Algorithm are adapted using reinforcement learning technique. The reinforcement learning algorithm used in this paper is Q-learning, a recently developed reinforcement learning algorithm. The performance of the Fuzzy-Logic Controller tuned with reinforcement controlled Genetic Algorithm is then compared with the one tuned with uncontrolled Genetic Algorithm. The theory is applied to a two-wheeled mobile robot’s path tracking problem. It is shown that the performance of the Fuzzy-Logic controller tuned by Genetic Algorithm controlled via reinforcement learning is better than the performance of the Fuzzy-Logic controller tuned via uncontrolled Genetic Algorithm.


Author(s):  
Lee Gim Hee ◽  
Marcelo H. Ang Jr.

The development of autonomous mobile robots is continuously gaining importance particularly in the military for surveillance as well as in industry for inspection and material handling tasks. Another emerging market with enormous potential is mobile robots for entertainment. A fundamental requirement for autonomous mobile robots in most of its applications is the ability to navigate from a point of origin to a given goal. The mobile robot must be able to generate a collision-free path that connects the point of origin and the given goal. Some of the key algorithms for mobile robot navigation will be discussed in this article.


Author(s):  
Jean-Christophe Fauroux ◽  
Frédéric Chapelle ◽  
Belhassen-Chedli Bouzgarrou ◽  
Philippe Vaslin ◽  
Mohamed Krid ◽  
...  

This chapter presents recent mechatronics developments to create original terrestrial mobile robots capable of crossing obstacles and maintaining their stability on irregular grounds. Obstacle crossing is both considered at low and high speeds. The developed robots use wheeled propulsion, efficient on smooth grounds, and improve performance on irregular grounds with additional mobilities, bringing them closer to legged locomotion (hybrid locomotion). Two sections are dedicated to low speed obstacle crossing. Section two presents an original mobile robot combining four actuated wheels with an articulated frame to improve obstacle climbing. Section three extends this work to a new concept of modular poly-robot for agile transport of long payloads. The last two sections deal with high-speed motion. Section four describes new suspensions with four mobilities that maintain pitch stability of vehicles crossing obstacles at high speed. After the shock, section five demonstrates stable pitch control during ballistic phase by accelerating-braking the wheels in flight.


1999 ◽  
Vol 11 (1) ◽  
pp. 1-1
Author(s):  
Kiyoshi Komoriya ◽  

Mobility, or locomotion, is as important a function for robots as manipulation. A robot can enlarge its work space by locomotion. It can also recognize its environment well with its sensors by moving around and by observing its surroundings from various directions. Much researches has been done on mobile robots and the research appears to be mature. Research activity on robot mobility is still very active; for example, 22% of the sessions at ICRA'98 - the International Conference on Robotics and Automation - and 24% of the sessions at IROS'98 - the International Conference on Intelligent Robots and Systems - dealt with issues directly related to mobile robots. One of the main reasons may be that intelligent mobile robots are thought to be the closest position to autonomous robot applications. This special issue focuses on a variety of mobile robot research from mobile mechanisms, localization, and navigation to remote control through networks. The first paper, entitled ""Control of an Omnidirectional Vehicle with Multiple Modular Steerable Drive Wheels,"" by M. Hashimoto et al., deals with locomotion mechanisms. They propose an omnidirectional mobile mechanism consisting of modular steerable drive wheels. The omnidirectional function of mobile mechanisms will be an important part of the human-friendly robot in the near future to realize flexible movements in indoor environments. The next three papers focus on audiovisual sensing to localize and navigate a robot. The second paper, entitled ""High-Speed Measurement of Normal Wall Direction by Ultrasonic Sensor,"" by A. Ohya et al., proposes a method to measure the normal direction of walls by ultrasonic array sensor. The third paper, entitled ""Self-Position Detection System Using a Visual-Sensor for Mobile Robots,"" is written by T. Tanaka et al. In their method, the position of the robot is decided by measuring marks such as name plates and fire alarm lamps by visual sensor. In the fourth paper, entitled ""Development of Ultra-Wide-Angle Laser Range Sensor and Navigation of a Mobile Robot in a Corridor Environment,"" written by Y Ando et al., a very wide view-angle sensor is realized using 5 laser fan beam projectors and 3 CCD cameras. The next three papers discussing navigation problems. The fifth paper, entitled ""Autonomous Navigation of an Intelligent Vehicle Using 1-Dimensional Optical Flow,"" by M. Yamada and K. Nakazawa, discusses navigation based on visual feedback. In this work, navigation is realized by general and qualitative knowledge of the environment. The sixth paper, entitled ""Development of Sensor-Based Navigation for Mobile Robots Using Target Direction Sensor,"" by M. Yamamoto et al., proposes a new sensor-based navigation algorithm in an unknown obstacle environment. The seventh paper, entitled ""Navigation Based on Vision and DGPS Information for Mobile Robots,"" S. Kotani et al., describes a navigation system for an autonomous mobile robot in an outdoor environment. The unique point of their paper is the utilization of landmarks and a differential global positioning system to determine robot position and orientation. The last paper deals with the relationship between the mobile robot and computer networks. The paper, entitled ""Direct Mobile Robot Teleoperation via Internet,"" by K. Kawabata et al., proposes direct teleoperation of a mobile robot via the Internet. Such network-based robotics will be an important field in robotics application. We sincerely thank all of the contributors to this special issue for their cooperation from the planning stage to the review process. Many thanks also go to the reviewers for their excellent work. We will be most happy if this issue aids readers in understanding recent trends in mobile robot research and furthers interest in this research field.


2017 ◽  
Vol 8 (2) ◽  
pp. 854-859
Author(s):  
M. Saiful Azimi ◽  
Z. A. Shukri ◽  
M. Zaharuddin

The difficulties of transporting heavy mobile robots limit robotic experiments in agriculture. Virtual reality however, offers an alternative to conduct experiments in agriculture. This paper presents an application of virtual reality in a robot navigational experiment using SolidWorks and simulated into MATLAB. Trajectories were initiated using Probabilistic Roadmap and compared based on travel time, distance and tracking error, and the efficiency was calculated. The simulation results showed that the proposed method was able to conduct the navigational experiment inside the virtual environment. U-turn trajectory was chosen as the best trajectory for crop inspection with 82.7% efficiency.


2021 ◽  
Vol 13 (21) ◽  
pp. 4216
Author(s):  
Piotr Duszak ◽  
Barbara Siemiątkowska ◽  
Rafał Więckowski

The paper addresses the problem of mobile robots’ navigation using a hexagonal lattice. We carried out experiments in which we used a vehicle equipped with a set of sensors. Based on the data, a traversable map was created. The experimental results proved that hexagonal maps of an environment can be easily built based on sensor readings. The path planning method has many advantages: the situation in which obstacles surround the position of the robot or the target is easily detected, and we can influence the properties of the path, e.g., the distance from obstacles or the type of surface can be taken into account. A path can be smoothed more easily than with a rectangular grid.


Sign in / Sign up

Export Citation Format

Share Document